File: chpt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (176 lines) | stat: -rw-r--r-- 5,198 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      SUBROUTINE CHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               RWORK( * )
      COMPLEX            A( * ), AFAC( * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  CHPT01 reconstructs a Hermitian indefinite packed matrix A from its
*  block L*D*L' or U*D*U' factorization and computes the residual
*     norm( C - A ) / ( N * norm(A) * EPS ),
*  where C is the reconstructed matrix, EPS is the machine epsilon,
*  L' is the conjugate transpose of L, and U' is the conjugate transpose
*  of U.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (N*(N+1)/2)
*          The original Hermitian matrix A, stored as a packed
*          triangular matrix.
*
*  AFAC    (input) COMPLEX array, dimension (N*(N+1)/2)
*          The factored form of the matrix A, stored as a packed
*          triangular matrix.  AFAC contains the block diagonal matrix D
*          and the multipliers used to obtain the factor L or U from the
*          block L*D*L' or U*D*U' factorization as computed by CHPTRF.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from CHPTRF.
*
*  C       (workspace) COMPLEX array, dimension (LDC,N)
*
*  LDC     (integer) INTEGER
*          The leading dimension of the array C.  LDC >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J, JC
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANHE, CLANHP, SLAMCH
      EXTERNAL           LSAME, CLANHE, CLANHP, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLAVHP, CLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAG, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHP( '1', UPLO, N, A, RWORK )
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      JC = 1
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 10 J = 1, N
            IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
            JC = JC + J + 1
   10    CONTINUE
      ELSE
         DO 20 J = 1, N
            IF( AIMAG( AFAC( JC ) ).NE.ZERO ) THEN
               RESID = ONE / EPS
               RETURN
            END IF
            JC = JC + N - J + 1
   20    CONTINUE
      END IF
*
*     Initialize C to the identity matrix.
*
      CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call CLAVHP to form the product D * U' (or D * L' ).
*
      CALL CLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Call CLAVHP again to multiply by U ( or L ).
*
      CALL CLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 0
         DO 40 J = 1, N
            DO 30 I = 1, J - 1
               C( I, J ) = C( I, J ) - A( JC+I )
   30       CONTINUE
            C( J, J ) = C( J, J ) - REAL( A( JC+J ) )
            JC = JC + J
   40    CONTINUE
      ELSE
         JC = 1
         DO 60 J = 1, N
            C( J, J ) = C( J, J ) - REAL( A( JC ) )
            DO 50 I = J + 1, N
               C( I, J ) = C( I, J ) - A( JC+I-J )
   50       CONTINUE
            JC = JC + N - J + 1
   60    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of CHPT01
*
      END