File: claptm.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (194 lines) | stat: -rw-r--r-- 6,390 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
      SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
     $                   LDB )
*
*  -- LAPACK auxiliary routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDB, LDX, N, NRHS
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      REAL               D( * )
      COMPLEX            B( LDB, * ), E( * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal
*  matrix A and stores the result in a matrix B.  The operation has the
*  form
*
*     B := alpha * A * X + beta * B
*
*  where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER
*          Specifies whether the superdiagonal or the subdiagonal of the
*          tridiagonal matrix A is stored.
*          = 'U':  Upper, E is the superdiagonal of A.
*          = 'L':  Lower, E is the subdiagonal of A.
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices X and B.
*
*  ALPHA   (input) REAL
*          The scalar alpha.  ALPHA must be 1. or -1.; otherwise,
*          it is assumed to be 0.
*
*  D       (input) REAL array, dimension (N)
*          The n diagonal elements of the tridiagonal matrix A.
*
*  E       (input) COMPLEX array, dimension (N-1)
*          The (n-1) subdiagonal or superdiagonal elements of A.
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The N by NRHS matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(N,1).
*
*  BETA    (input) REAL
*          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
*          it is assumed to be 1.
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the N by NRHS matrix B.
*          On exit, B is overwritten by the matrix expression
*          B := alpha * A * X + beta * B.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(N,1).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 )
     $   RETURN
*
      IF( BETA.EQ.ZERO ) THEN
         DO 20 J = 1, NRHS
            DO 10 I = 1, N
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE IF( BETA.EQ.-ONE ) THEN
         DO 40 J = 1, NRHS
            DO 30 I = 1, N
               B( I, J ) = -B( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
      IF( ALPHA.EQ.ONE ) THEN
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Compute B := B + A*X, where E is the superdiagonal of A.
*
            DO 60 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
     $                        E( 1 )*X( 2, J )
                  B( N, J ) = B( N, J ) + CONJG( E( N-1 ) )*
     $                        X( N-1, J ) + D( N )*X( N, J )
                  DO 50 I = 2, N - 1
                     B( I, J ) = B( I, J ) + CONJG( E( I-1 ) )*
     $                           X( I-1, J ) + D( I )*X( I, J ) +
     $                           E( I )*X( I+1, J )
   50             CONTINUE
               END IF
   60       CONTINUE
         ELSE
*
*           Compute B := B + A*X, where E is the subdiagonal of A.
*
            DO 80 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
     $                        CONJG( E( 1 ) )*X( 2, J )
                  B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
     $                        D( N )*X( N, J )
                  DO 70 I = 2, N - 1
                     B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
     $                           D( I )*X( I, J ) +
     $                           CONJG( E( I ) )*X( I+1, J )
   70             CONTINUE
               END IF
   80       CONTINUE
         END IF
      ELSE IF( ALPHA.EQ.-ONE ) THEN
         IF( LSAME( UPLO, 'U' ) ) THEN
*
*           Compute B := B - A*X, where E is the superdiagonal of A.
*
            DO 100 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
     $                        E( 1 )*X( 2, J )
                  B( N, J ) = B( N, J ) - CONJG( E( N-1 ) )*
     $                        X( N-1, J ) - D( N )*X( N, J )
                  DO 90 I = 2, N - 1
                     B( I, J ) = B( I, J ) - CONJG( E( I-1 ) )*
     $                           X( I-1, J ) - D( I )*X( I, J ) -
     $                           E( I )*X( I+1, J )
   90             CONTINUE
               END IF
  100       CONTINUE
         ELSE
*
*           Compute B := B - A*X, where E is the subdiagonal of A.
*
            DO 120 J = 1, NRHS
               IF( N.EQ.1 ) THEN
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
               ELSE
                  B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
     $                        CONJG( E( 1 ) )*X( 2, J )
                  B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
     $                        D( N )*X( N, J )
                  DO 110 I = 2, N - 1
                     B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
     $                           D( I )*X( I, J ) -
     $                           CONJG( E( I ) )*X( I+1, J )
  110             CONTINUE
               END IF
  120       CONTINUE
         END IF
      END IF
      RETURN
*
*     End of CLAPTM
*
      END