1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
$ LDB )
*
* -- LAPACK auxiliary routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDB, LDX, N, NRHS
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX B( LDB, * ), E( * ), X( LDX, * )
* ..
*
* Purpose
* =======
*
* CLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal
* matrix A and stores the result in a matrix B. The operation has the
* form
*
* B := alpha * A * X + beta * B
*
* where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER
* Specifies whether the superdiagonal or the subdiagonal of the
* tridiagonal matrix A is stored.
* = 'U': Upper, E is the superdiagonal of A.
* = 'L': Lower, E is the subdiagonal of A.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrices X and B.
*
* ALPHA (input) REAL
* The scalar alpha. ALPHA must be 1. or -1.; otherwise,
* it is assumed to be 0.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the tridiagonal matrix A.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) subdiagonal or superdiagonal elements of A.
*
* X (input) COMPLEX array, dimension (LDX,NRHS)
* The N by NRHS matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(N,1).
*
* BETA (input) REAL
* The scalar beta. BETA must be 0., 1., or -1.; otherwise,
* it is assumed to be 1.
*
* B (input/output) COMPLEX array, dimension (LDB,NRHS)
* On entry, the N by NRHS matrix B.
* On exit, B is overwritten by the matrix expression
* B := alpha * A * X + beta * B.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(N,1).
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 )
$ RETURN
*
IF( BETA.EQ.ZERO ) THEN
DO 20 J = 1, NRHS
DO 10 I = 1, N
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE IF( BETA.EQ.-ONE ) THEN
DO 40 J = 1, NRHS
DO 30 I = 1, N
B( I, J ) = -B( I, J )
30 CONTINUE
40 CONTINUE
END IF
*
IF( ALPHA.EQ.ONE ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Compute B := B + A*X, where E is the superdiagonal of A.
*
DO 60 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ E( 1 )*X( 2, J )
B( N, J ) = B( N, J ) + CONJG( E( N-1 ) )*
$ X( N-1, J ) + D( N )*X( N, J )
DO 50 I = 2, N - 1
B( I, J ) = B( I, J ) + CONJG( E( I-1 ) )*
$ X( I-1, J ) + D( I )*X( I, J ) +
$ E( I )*X( I+1, J )
50 CONTINUE
END IF
60 CONTINUE
ELSE
*
* Compute B := B + A*X, where E is the subdiagonal of A.
*
DO 80 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ CONJG( E( 1 ) )*X( 2, J )
B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
$ D( N )*X( N, J )
DO 70 I = 2, N - 1
B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
$ D( I )*X( I, J ) +
$ CONJG( E( I ) )*X( I+1, J )
70 CONTINUE
END IF
80 CONTINUE
END IF
ELSE IF( ALPHA.EQ.-ONE ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Compute B := B - A*X, where E is the superdiagonal of A.
*
DO 100 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ E( 1 )*X( 2, J )
B( N, J ) = B( N, J ) - CONJG( E( N-1 ) )*
$ X( N-1, J ) - D( N )*X( N, J )
DO 90 I = 2, N - 1
B( I, J ) = B( I, J ) - CONJG( E( I-1 ) )*
$ X( I-1, J ) - D( I )*X( I, J ) -
$ E( I )*X( I+1, J )
90 CONTINUE
END IF
100 CONTINUE
ELSE
*
* Compute B := B - A*X, where E is the subdiagonal of A.
*
DO 120 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ CONJG( E( 1 ) )*X( 2, J )
B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
$ D( N )*X( N, J )
DO 110 I = 2, N - 1
B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
$ D( I )*X( I, J ) -
$ CONJG( E( I ) )*X( I+1, J )
110 CONTINUE
END IF
120 CONTINUE
END IF
END IF
RETURN
*
* End of CLAPTM
*
END
|