File: clqt02.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (152 lines) | stat: -rw-r--r-- 4,814 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
      SUBROUTINE CLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  CLQT02 tests CUNGLQ, which generates an m-by-n matrix Q with
*  orthonornmal rows that is defined as the product of k elementary
*  reflectors.
*
*  Given the LQ factorization of an m-by-n matrix A, CLQT02 generates
*  the orthogonal matrix Q defined by the factorization of the first k
*  rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
*  checks that the rows of Q are orthonormal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix Q to be generated.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix Q to be generated.
*          N >= M >= 0.
*
*  K       (input) INTEGER
*          The number of elementary reflectors whose product defines the
*          matrix Q. M >= K >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The m-by-n matrix A which was factorized by CLQT01.
*
*  AF      (input) COMPLEX array, dimension (LDA,N)
*          Details of the LQ factorization of A, as returned by CGELQF.
*          See CGELQF for further details.
*
*  Q       (workspace) COMPLEX array, dimension (LDA,N)
*
*  L       (workspace) COMPLEX array, dimension (LDA,M)
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
*  TAU     (input) COMPLEX array, dimension (M)
*          The scalar factors of the elementary reflectors corresponding
*          to the LQ factorization in AF.
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT  (output) REAL array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            ROGUE
      PARAMETER          ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANSY, SLAMCH
      EXTERNAL           CLANGE, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CHERK, CLACPY, CLASET, CUNGLQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the first k rows of the factorization to the array Q
*
      CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      CALL CLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
*     Generate the first n columns of the matrix Q
*
      SRNAMT = 'CUNGLQ'
      CALL CUNGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L(1:k,1:m)
*
      CALL CLASET( 'Full', K, M, CMPLX( ZERO ), CMPLX( ZERO ), L, LDA )
      CALL CLACPY( 'Lower', K, M, AF, LDA, L, LDA )
*
*     Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
*
      CALL CGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
     $            CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), L, LDA )
*
*     Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
*
      ANORM = CLANGE( '1', K, N, A, LDA, RWORK )
      RESID = CLANGE( '1', K, M, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), L, LDA )
      CALL CHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = CLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of CLQT02
*
      END