File: cpot01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (177 lines) | stat: -rw-r--r-- 5,074 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
      SUBROUTINE CPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AFAC( LDAFAC, * )
*     ..
*
*  Purpose
*  =======
*
*  CPOT01 reconstructs a Hermitian positive definite matrix  A  from
*  its L*L' or U'*U factorization and computes the residual
*     norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*     norm( U'*U - A ) / ( N * norm(A) * EPS ),
*  where EPS is the machine epsilon, L' is the conjugate transpose of L,
*  and U' is the conjugate transpose of U.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original Hermitian matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N)
*
*  AFAC    (input/output) COMPLEX array, dimension (LDAFAC,N)
*          On entry, the factor L or U from the L*L' or U'*U
*          factorization of A.
*          Overwritten with the reconstructed matrix, and then with the
*          difference L*L' - A (or U'*U - A).
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      REAL               ANORM, EPS, TR
      COMPLEX            TC
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANHE, SLAMCH
      COMPLEX            CDOTC
      EXTERNAL           LSAME, CLANHE, SLAMCH, CDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHER, CSCAL, CTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          AIMAG, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      DO 10 J = 1, N
         IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
            RESID = ONE / EPS
            RETURN
         END IF
   10 CONTINUE
*
*     Compute the product U'*U, overwriting U.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 K = N, 1, -1
*
*           Compute the (K,K) element of the result.
*
            TR = CDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
            AFAC( K, K ) = TR
*
*           Compute the rest of column K.
*
            CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
     $                  LDAFAC, AFAC( 1, K ), 1 )
*
   20    CONTINUE
*
*     Compute the product L*L', overwriting L.
*
      ELSE
         DO 30 K = N, 1, -1
*
*           Add a multiple of column K of the factor L to each of
*           columns K+1 through N.
*
            IF( K+1.LE.N )
     $         CALL CHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
     $                    AFAC( K+1, K+1 ), LDAFAC )
*
*           Scale column K by the diagonal element.
*
            TC = AFAC( K, K )
            CALL CSCAL( N-K+1, TC, AFAC( K, K ), 1 )
*
   30    CONTINUE
      END IF
*
*     Compute the difference  L*L' - A (or U'*U - A).
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 50 J = 1, N
            DO 40 I = 1, J - 1
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   40       CONTINUE
            AFAC( J, J ) = AFAC( J, J ) - REAL( A( J, J ) )
   50    CONTINUE
      ELSE
         DO 70 J = 1, N
            AFAC( J, J ) = AFAC( J, J ) - REAL( A( J, J ) )
            DO 60 I = J + 1, N
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   60       CONTINUE
   70    CONTINUE
      END IF
*
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
      RESID = CLANHE( '1', UPLO, N, AFAC, LDAFAC, RWORK )
*
      RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
      RETURN
*
*     End of CPOT01
*
      END