1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
SUBROUTINE CPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
$ RWORK, RCOND, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAINV, LDWORK, N
REAL RCOND, RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), AINV( LDAINV, * ),
$ WORK( LDWORK, * )
* ..
*
* Purpose
* =======
*
* CPOT03 computes the residual for a Hermitian matrix times its
* inverse:
* norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The original Hermitian matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N)
*
* AINV (input/output) COMPLEX array, dimension (LDAINV,N)
* On entry, the inverse of the matrix A, stored as a Hermitian
* matrix in the same format as A.
* In this version, AINV is expanded into a full matrix and
* multiplied by A, so the opposing triangle of AINV will be
* changed; i.e., if the upper triangular part of AINV is
* stored, the lower triangular part will be used as work space.
*
* LDAINV (input) INTEGER
* The leading dimension of the array AINV. LDAINV >= max(1,N).
*
* WORK (workspace) COMPLEX array, dimension (LDWORK,N)
*
* LDWORK (input) INTEGER
* The leading dimension of the array WORK. LDWORK >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RCOND (output) REAL
* The reciprocal of the condition number of A, computed as
* ( 1/norm(A) ) / norm(AINV).
*
* RESID (output) REAL
* norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANGE, CLANHE, SLAMCH
EXTERNAL LSAME, CLANGE, CLANHE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CHEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
AINVNM = CLANHE( '1', UPLO, N, AINV, LDAINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE/ANORM ) / AINVNM
*
* Expand AINV into a full matrix and call CHEMM to multiply
* AINV on the left by A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
DO 10 I = 1, J - 1
AINV( J, I ) = CONJG( AINV( I, J ) )
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1, N
DO 30 I = J + 1, N
AINV( J, I ) = CONJG( AINV( I, J ) )
30 CONTINUE
40 CONTINUE
END IF
CALL CHEMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV,
$ CZERO, WORK, LDWORK )
*
* Add the identity matrix to WORK .
*
DO 50 I = 1, N
WORK( I, I ) = WORK( I, I ) + CONE
50 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
RETURN
*
* End of CPOT03
*
END
|