File: cpot03.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (152 lines) | stat: -rw-r--r-- 4,603 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
      SUBROUTINE CPOT03( UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK,
     $                   RWORK, RCOND, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAINV, LDWORK, N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), AINV( LDAINV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  CPOT03 computes the residual for a Hermitian matrix times its
*  inverse:
*     norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The original Hermitian matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N)
*
*  AINV    (input/output) COMPLEX array, dimension (LDAINV,N)
*          On entry, the inverse of the matrix A, stored as a Hermitian
*          matrix in the same format as A.
*          In this version, AINV is expanded into a full matrix and
*          multiplied by A, so the opposing triangle of AINV will be
*          changed; i.e., if the upper triangular part of AINV is
*          stored, the lower triangular part will be used as work space.
*
*  LDAINV  (input) INTEGER
*          The leading dimension of the array AINV.  LDAINV >= max(1,N).
*
*  WORK    (workspace) COMPLEX array, dimension (LDWORK,N)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of A, computed as
*          ( 1/norm(A) ) / norm(AINV).
*
*  RESID   (output) REAL
*          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ),
     $                   CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, CLANHE, SLAMCH
      EXTERNAL           LSAME, CLANGE, CLANHE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CONJG, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
      AINVNM = CLANHE( '1', UPLO, N, AINV, LDAINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE/ANORM ) / AINVNM
*
*     Expand AINV into a full matrix and call CHEMM to multiply
*     AINV on the left by A.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, J - 1
               AINV( J, I ) = CONJG( AINV( I, J ) )
   10       CONTINUE
   20    CONTINUE
      ELSE
         DO 40 J = 1, N
            DO 30 I = J + 1, N
               AINV( J, I ) = CONJG( AINV( I, J ) )
   30       CONTINUE
   40    CONTINUE
      END IF
      CALL CHEMM( 'Left', UPLO, N, N, -CONE, A, LDA, AINV, LDAINV,
     $            CZERO, WORK, LDWORK )
*
*     Add the identity matrix to WORK .
*
      DO 50 I = 1, N
         WORK( I, I ) = WORK( I, I ) + CONE
   50 CONTINUE
*
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
      RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
      RETURN
*
*     End of CPOT03
*
      END