File: cppt02.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (136 lines) | stat: -rw-r--r-- 4,000 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
      SUBROUTINE CPPT02( UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CPPT02 computes the residual in the solution of a Hermitian system
*  of linear equations  A*x = b  when packed storage is used for the
*  coefficient matrix.  The ratio computed is
*
*     RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS),
*
*  where EPS is the machine precision.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B, the matrix of right hand sides.
*          NRHS >= 0.
*
*  A       (input) COMPLEX array, dimension (N*(N+1)/2)
*          The original Hermitian matrix A, stored as a packed
*          triangular matrix.
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.   LDX >= max(1,N).
*
*  B       (input/output) COMPLEX array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the system of
*          linear equations.
*          On exit, B is overwritten with the difference B - A*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          The maximum over the number of right hand sides of
*          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      REAL               CLANHP, SCASUM, SLAMCH
      EXTERNAL           CLANHP, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHPMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0.
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANHP( '1', UPLO, N, A, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute  B - A*X  for the matrix of right hand sides B.
*
      DO 10 J = 1, NRHS
         CALL CHPMV( UPLO, N, -CONE, A, X( 1, J ), 1, CONE, B( 1, J ),
     $               1 )
   10 CONTINUE
*
*     Compute the maximum over the number of right hand sides of
*        norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) .
*
      RESID = ZERO
      DO 20 J = 1, NRHS
         BNORM = SCASUM( N, B( 1, J ), 1 )
         XNORM = SCASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
         END IF
   20 CONTINUE
*
      RETURN
*
*     End of CPPT02
*
      END