1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
|
SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER N
REAL RESID
* ..
* .. Array Arguments ..
REAL D( * ), DF( * )
COMPLEX E( * ), EF( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
* factorization and computes the residual
* norm(L*D*L' - A) / ( n * norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* =========
*
* N (input) INTEGTER
* The order of the matrix A.
*
* D (input) REAL array, dimension (N)
* The n diagonal elements of the tridiagonal matrix A.
*
* E (input) COMPLEX array, dimension (N-1)
* The (n-1) subdiagonal elements of the tridiagonal matrix A.
*
* DF (input) REAL array, dimension (N)
* The n diagonal elements of the factor L from the L*D*L'
* factorization of A.
*
* EF (input) COMPLEX array, dimension (N-1)
* The (n-1) subdiagonal elements of the factor L from the
* L*D*L' factorization of A.
*
* WORK (workspace) COMPLEX array, dimension (2*N)
*
* RESID (output) REAL
* norm(L*D*L' - A) / (n * norm(A) * EPS)
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL ANORM, EPS
COMPLEX DE
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
* Construct the difference L*D*L' - A.
*
WORK( 1 ) = DF( 1 ) - D( 1 )
DO 10 I = 1, N - 1
DE = DF( I )*EF( I )
WORK( N+I ) = DE - E( I )
WORK( 1+I ) = DE*CONJG( EF( I ) ) + DF( I+1 ) - D( I+1 )
10 CONTINUE
*
* Compute the 1-norms of the tridiagonal matrices A and WORK.
*
IF( N.EQ.1 ) THEN
ANORM = D( 1 )
RESID = ABS( WORK( 1 ) )
ELSE
ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) )
RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ),
$ ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) )
DO 20 I = 2, N - 1
ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) )
RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+
$ ABS( WORK( N+I ) ) )
20 CONTINUE
END IF
*
* Compute norm(L*D*L' - A) / (n * norm(A) * EPS)
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of CPTT01
*
END
|