File: cqrt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (156 lines) | stat: -rw-r--r-- 4,660 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
      SUBROUTINE CQRT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  CQRT01 tests CGEQRF, which computes the QR factorization of an m-by-n
*  matrix A, and partially tests CUNGQR which forms the m-by-m
*  orthogonal matrix Q.
*
*  CQRT01 compares R with Q'*A, and checks that Q is orthogonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The m-by-n matrix A.
*
*  AF      (output) COMPLEX array, dimension (LDA,N)
*          Details of the QR factorization of A, as returned by CGEQRF.
*          See CGEQRF for further details.
*
*  Q       (output) COMPLEX array, dimension (LDA,M)
*          The m-by-m orthogonal matrix Q.
*
*  R       (workspace) COMPLEX array, dimension (LDA,max(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and R.
*          LDA >= max(M,N).
*
*  TAU     (output) COMPLEX array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by CGEQRF.
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT  (output) REAL array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            ROGUE
      PARAMETER          ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANSY, SLAMCH
      EXTERNAL           CLANGE, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CGEQRF, CHERK, CLACPY, CLASET, CUNGQR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, MIN, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'CGEQRF'
      CALL CGEQRF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL CLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
      CALL CLACPY( 'Lower', M-1, N, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
*     Generate the m-by-m matrix Q
*
      SRNAMT = 'CUNGQR'
      CALL CUNGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy R
*
      CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), R, LDA )
      CALL CLACPY( 'Upper', M, N, AF, LDA, R, LDA )
*
*     Compute R - Q'*A
*
      CALL CGEMM( 'Conjugate transpose', 'No transpose', M, N, M,
     $            CMPLX( -ONE ), Q, LDA, A, LDA, CMPLX( ONE ), R, LDA )
*
*     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
*
      ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
      RESID = CLANGE( '1', M, N, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q'*Q
*
      CALL CLASET( 'Full', M, M, CMPLX( ZERO ), CMPLX( ONE ), R, LDA )
      CALL CHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA,
     $            ONE, R, LDA )
*
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
      RESID = CLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
*
      RETURN
*
*     End of CQRT01
*
      END