1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
SUBROUTINE CQRT15( SCALE, RKSEL, M, N, NRHS, A, LDA, B, LDB, S,
$ RANK, NORMA, NORMB, ISEED, WORK, LWORK )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, NRHS, RANK, RKSEL, SCALE
REAL NORMA, NORMB
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL S( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( LWORK )
* ..
*
* Purpose
* =======
*
* CQRT15 generates a matrix with full or deficient rank and of various
* norms.
*
* Arguments
* =========
*
* SCALE (input) INTEGER
* SCALE = 1: normally scaled matrix
* SCALE = 2: matrix scaled up
* SCALE = 3: matrix scaled down
*
* RKSEL (input) INTEGER
* RKSEL = 1: full rank matrix
* RKSEL = 2: rank-deficient matrix
*
* M (input) INTEGER
* The number of rows of the matrix A.
*
* N (input) INTEGER
* The number of columns of A.
*
* NRHS (input) INTEGER
* The number of columns of B.
*
* A (output) COMPLEX array, dimension (LDA,N)
* The M-by-N matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
*
* B (output) COMPLEX array, dimension (LDB, NRHS)
* A matrix that is in the range space of matrix A.
*
* LDB (input) INTEGER
* The leading dimension of the array B.
*
* S (output) REAL array, dimension MIN(M,N)
* Singular values of A.
*
* RANK (output) INTEGER
* number of nonzero singular values of A.
*
* NORMA (output) REAL
* one-norm norm of A.
*
* NORMB (output) REAL
* one-norm norm of B.
*
* ISEED (input/output) integer array, dimension (4)
* seed for random number generator.
*
* WORK (workspace) COMPLEX array, dimension (LWORK)
*
* LWORK (input) INTEGER
* length of work space required.
* LWORK >= MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TWO, SVMIN
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, TWO = 2.0E+0,
$ SVMIN = 0.1E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER INFO, J, MN
REAL BIGNUM, EPS, SMLNUM, TEMP
* ..
* .. Local Arrays ..
REAL DUMMY( 1 )
* ..
* .. External Functions ..
REAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
EXTERNAL CLANGE, SASUM, SCNRM2, SLAMCH, SLARND
* ..
* .. External Subroutines ..
EXTERNAL CGEMM, CLARF, CLARNV, CLAROR, CLASCL, CLASET,
$ CSSCAL, SLABAD, SLAORD, SLASCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, MAX, MIN
* ..
* .. Executable Statements ..
*
MN = MIN( M, N )
IF( LWORK.LT.MAX( M+MN, MN*NRHS, 2*N+M ) ) THEN
CALL XERBLA( 'CQRT15', 16 )
RETURN
END IF
*
SMLNUM = SLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
EPS = SLAMCH( 'Epsilon' )
SMLNUM = ( SMLNUM / EPS ) / EPS
BIGNUM = ONE / SMLNUM
*
* Determine rank and (unscaled) singular values
*
IF( RKSEL.EQ.1 ) THEN
RANK = MN
ELSE IF( RKSEL.EQ.2 ) THEN
RANK = ( 3*MN ) / 4
DO 10 J = RANK + 1, MN
S( J ) = ZERO
10 CONTINUE
ELSE
CALL XERBLA( 'CQRT15', 2 )
END IF
*
IF( RANK.GT.0 ) THEN
*
* Nontrivial case
*
S( 1 ) = ONE
DO 30 J = 2, RANK
20 CONTINUE
TEMP = SLARND( 1, ISEED )
IF( TEMP.GT.SVMIN ) THEN
S( J ) = ABS( TEMP )
ELSE
GO TO 20
END IF
30 CONTINUE
CALL SLAORD( 'Decreasing', RANK, S, 1 )
*
* Generate 'rank' columns of a random orthogonal matrix in A
*
CALL CLARNV( 2, ISEED, M, WORK )
CALL CSSCAL( M, ONE / SCNRM2( M, WORK, 1 ), WORK, 1 )
CALL CLASET( 'Full', M, RANK, CZERO, CONE, A, LDA )
CALL CLARF( 'Left', M, RANK, WORK, 1, CMPLX( TWO ), A, LDA,
$ WORK( M+1 ) )
*
* workspace used: m+mn
*
* Generate consistent rhs in the range space of A
*
CALL CLARNV( 2, ISEED, RANK*NRHS, WORK )
CALL CGEMM( 'No transpose', 'No transpose', M, NRHS, RANK,
$ CONE, A, LDA, WORK, RANK, CZERO, B, LDB )
*
* work space used: <= mn *nrhs
*
* generate (unscaled) matrix A
*
DO 40 J = 1, RANK
CALL CSSCAL( M, S( J ), A( 1, J ), 1 )
40 CONTINUE
IF( RANK.LT.N )
$ CALL CLASET( 'Full', M, N-RANK, CZERO, CZERO,
$ A( 1, RANK+1 ), LDA )
CALL CLAROR( 'Right', 'No initialization', M, N, A, LDA, ISEED,
$ WORK, INFO )
*
ELSE
*
* work space used 2*n+m
*
* Generate null matrix and rhs
*
DO 50 J = 1, MN
S( J ) = ZERO
50 CONTINUE
CALL CLASET( 'Full', M, N, CZERO, CZERO, A, LDA )
CALL CLASET( 'Full', M, NRHS, CZERO, CZERO, B, LDB )
*
END IF
*
* Scale the matrix
*
IF( SCALE.NE.1 ) THEN
NORMA = CLANGE( 'Max', M, N, A, LDA, DUMMY )
IF( NORMA.NE.ZERO ) THEN
IF( SCALE.EQ.2 ) THEN
*
* matrix scaled up
*
CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, N, A,
$ LDA, INFO )
CALL SLASCL( 'General', 0, 0, NORMA, BIGNUM, MN, 1, S,
$ MN, INFO )
CALL CLASCL( 'General', 0, 0, NORMA, BIGNUM, M, NRHS, B,
$ LDB, INFO )
ELSE IF( SCALE.EQ.3 ) THEN
*
* matrix scaled down
*
CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, N, A,
$ LDA, INFO )
CALL SLASCL( 'General', 0, 0, NORMA, SMLNUM, MN, 1, S,
$ MN, INFO )
CALL CLASCL( 'General', 0, 0, NORMA, SMLNUM, M, NRHS, B,
$ LDB, INFO )
ELSE
CALL XERBLA( 'CQRT15', 1 )
RETURN
END IF
END IF
END IF
*
NORMA = SASUM( MN, S, 1 )
NORMB = CLANGE( 'One-norm', M, NRHS, B, LDB, DUMMY )
*
RETURN
*
* End of CQRT15
*
END
|