1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
SUBROUTINE CSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDC, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL RWORK( * )
COMPLEX A( * ), AFAC( * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* CSPT01 reconstructs a symmetric indefinite packed matrix A from its
* diagonal pivoting factorization A = U*D*U' or A = L*D*L' and computes
* the residual
* norm( C - A ) / ( N * norm(A) * EPS ),
* where C is the reconstructed matrix and EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) COMPLEX array, dimension (N*(N+1)/2)
* The original symmetric matrix A, stored as a packed
* triangular matrix.
*
* AFAC (input) COMPLEX array, dimension (N*(N+1)/2)
* The factored form of the matrix A, stored as a packed
* triangular matrix. AFAC contains the block diagonal matrix D
* and the multipliers used to obtain the factor L or U from the
* L*D*L' or U*D*U' factorization as computed by CSPTRF.
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from CSPTRF.
*
* C (workspace) COMPLEX array, dimension (LDC,N)
*
* LDC (integer) INTEGER
* The leading dimension of the array C. LDC >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J, JC
REAL ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANSP, CLANSY, SLAMCH
EXTERNAL LSAME, CLANSP, CLANSY, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLAVSP, CLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANSP( '1', UPLO, N, A, RWORK )
*
* Initialize C to the identity matrix.
*
CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
* Call CLAVSP to form the product D * U' (or D * L' ).
*
CALL CLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
$ LDC, INFO )
*
* Call CLAVSP again to multiply by U ( or L ).
*
CALL CLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
$ LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
JC = 0
DO 20 J = 1, N
DO 10 I = 1, J
C( I, J ) = C( I, J ) - A( JC+I )
10 CONTINUE
JC = JC + J
20 CONTINUE
ELSE
JC = 1
DO 40 J = 1, N
DO 30 I = J, N
C( I, J ) = C( I, J ) - A( JC+I-J )
30 CONTINUE
JC = JC + N - J + 1
40 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = CLANSY( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID/REAL( N ) )/ANORM ) / EPS
END IF
*
RETURN
*
* End of CSPT01
*
END
|