File: cspt03.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (218 lines) | stat: -rw-r--r-- 6,571 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
      SUBROUTINE CSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDW, N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( * ), AINV( * ), WORK( LDW, * )
*     ..
*
*  Purpose
*  =======
*
*  CSPT03 computes the residual for a complex symmetric packed matrix
*  times its inverse:
*     norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          complex symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (N*(N+1)/2)
*          The original complex symmetric matrix A, stored as a packed
*          triangular matrix.
*
*  AINV    (input) COMPLEX array, dimension (N*(N+1)/2)
*          The (symmetric) inverse of the matrix A, stored as a packed
*          triangular matrix.
*
*  WORK    (workspace) COMPLEX array, dimension (LDWORK,N)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RCOND   (output) REAL
*          The reciprocal of the condition number of A, computed as
*          ( 1/norm(A) ) / norm(AINV).
*
*  RESID   (output) REAL
*          norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, ICOL, J, JCOL, K, KCOL, NALL
      REAL               AINVNM, ANORM, EPS
      COMPLEX            T
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANGE, CLANSP, SLAMCH
      COMPLEX            CDOTU
      EXTERNAL           LSAME, CLANGE, CLANSP, SLAMCH, CDOTU
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = CLANSP( '1', UPLO, N, A, RWORK )
      AINVNM = CLANSP( '1', UPLO, N, AINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE/ANORM ) / AINVNM
*
*     Case where both A and AINV are upper triangular:
*     Each element of - A * AINV is computed by taking the dot product
*     of a row of A with a column of AINV.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 70 I = 1, N
            ICOL = ( ( I-1 )*I ) / 2 + 1
*
*           Code when J <= I
*
            DO 30 J = 1, I
               JCOL = ( ( J-1 )*J ) / 2 + 1
               T = CDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 )
               JCOL = JCOL + 2*J - 1
               KCOL = ICOL - 1
               DO 10 K = J + 1, I
                  T = T + A( KCOL+K )*AINV( JCOL )
                  JCOL = JCOL + K
   10          CONTINUE
               KCOL = KCOL + 2*I
               DO 20 K = I + 1, N
                  T = T + A( KCOL )*AINV( JCOL )
                  KCOL = KCOL + K
                  JCOL = JCOL + K
   20          CONTINUE
               WORK( I, J ) = -T
   30       CONTINUE
*
*           Code when J > I
*
            DO 60 J = I + 1, N
               JCOL = ( ( J-1 )*J ) / 2 + 1
               T = CDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 )
               JCOL = JCOL - 1
               KCOL = ICOL + 2*I - 1
               DO 40 K = I + 1, J
                  T = T + A( KCOL )*AINV( JCOL+K )
                  KCOL = KCOL + K
   40          CONTINUE
               JCOL = JCOL + 2*J
               DO 50 K = J + 1, N
                  T = T + A( KCOL )*AINV( JCOL )
                  KCOL = KCOL + K
                  JCOL = JCOL + K
   50          CONTINUE
               WORK( I, J ) = -T
   60       CONTINUE
   70    CONTINUE
      ELSE
*
*        Case where both A and AINV are lower triangular
*
         NALL = ( N*( N+1 ) ) / 2
         DO 140 I = 1, N
*
*           Code when J <= I
*
            ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1
            DO 100 J = 1, I
               JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I )
               T = CDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 )
               KCOL = I
               JCOL = J
               DO 80 K = 1, J - 1
                  T = T + A( KCOL )*AINV( JCOL )
                  JCOL = JCOL + N - K
                  KCOL = KCOL + N - K
   80          CONTINUE
               JCOL = JCOL - J
               DO 90 K = J, I - 1
                  T = T + A( KCOL )*AINV( JCOL+K )
                  KCOL = KCOL + N - K
   90          CONTINUE
               WORK( I, J ) = -T
  100       CONTINUE
*
*           Code when J > I
*
            ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2
            DO 130 J = I + 1, N
               JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1
               T = CDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 )
               KCOL = I
               JCOL = J
               DO 110 K = 1, I - 1
                  T = T + A( KCOL )*AINV( JCOL )
                  JCOL = JCOL + N - K
                  KCOL = KCOL + N - K
  110          CONTINUE
               KCOL = KCOL - I
               DO 120 K = I, J - 1
                  T = T + A( KCOL+K )*AINV( JCOL )
                  JCOL = JCOL + N - K
  120          CONTINUE
               WORK( I, J ) = -T
  130       CONTINUE
  140    CONTINUE
      END IF
*
*     Add the identity matrix to WORK .
*
      DO 150 I = 1, N
         WORK( I, I ) = WORK( I, I ) + ONE
  150 CONTINUE
*
*     Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = CLANGE( '1', N, N, WORK, LDW, RWORK )
*
      RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
      RETURN
*
*     End of CSPT03
*
      END