File: ctbt02.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (161 lines) | stat: -rw-r--r-- 5,302 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
      SUBROUTINE CTBT02( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, X,
     $                   LDX, B, LDB, WORK, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            KD, LDAB, LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CTBT02 computes the residual for the computed solution to a
*  triangular system of linear equations  A*x = b,  A**T *x = b,  or
*  A**H *x = b  when A is a triangular band matrix.  Here A**T denotes
*  the transpose of A, A**H denotes the conjugate transpose of A, and
*  x and b are N by NRHS matrices.  The test ratio is the maximum over
*  the number of right hand sides of
*     norm(b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
*  where op(A) denotes A, A**T, or A**H, and EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  TRANS   (input) CHARACTER*1
*          Specifies the operation applied to A.
*          = 'N':  A *x = b     (No transpose)
*          = 'T':  A**T *x = b  (Transpose)
*          = 'C':  A**H *x = b  (Conjugate transpose)
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  KD      (input) INTEGER
*          The number of superdiagonals or subdiagonals of the
*          triangular band matrix A.  KD >= 0.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of the matrices X and B.  NRHS >= 0.
*
*  AB      (input) COMPLEX array, dimension (LDA,N)
*          The upper or lower triangular band matrix A, stored in the
*          first kd+1 rows of the array. The j-th column of A is stored
*          in the j-th column of the array AB as follows:
*          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*
*  LDAB    (input) INTEGER
*          The leading dimension of the array AB.  LDAB >= max(1,KD+1).
*
*  X       (input) COMPLEX array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  LDX >= max(1,N).
*
*  B       (input) COMPLEX array, dimension (LDB,NRHS)
*          The right hand side vectors for the system of linear
*          equations.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  LDB >= max(1,N).
*
*  WORK    (workspace) COMPLEX array, dimension (N)
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          The maximum over the number of right hand sides of
*          norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANTB, SCASUM, SLAMCH
      EXTERNAL           LSAME, CLANTB, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CTBMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute the 1-norm of A or A'.
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         ANORM = CLANTB( '1', UPLO, DIAG, N, KD, AB, LDAB, RWORK )
      ELSE
         ANORM = CLANTB( 'I', UPLO, DIAG, N, KD, AB, LDAB, RWORK )
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
         CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
         CALL CAXPY( N, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
         BNORM = SCASUM( N, WORK, 1 )
         XNORM = SCASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of CTBT02
*
      END