1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
|
SUBROUTINE CTRT05( UPLO, TRANS, DIAG, N, NRHS, A, LDA, B, LDB, X,
$ LDX, XACT, LDXACT, FERR, BERR, RESLTS )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER LDA, LDB, LDX, LDXACT, N, NRHS
* ..
* .. Array Arguments ..
REAL BERR( * ), FERR( * ), RESLTS( * )
COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * ),
$ XACT( LDXACT, * )
* ..
*
* Purpose
* =======
*
* CTRT05 tests the error bounds from iterative refinement for the
* computed solution to a system of equations A*X = B, where A is a
* triangular n by n matrix.
*
* RESLTS(1) = test of the error bound
* = norm(X - XACT) / ( norm(X) * FERR )
*
* A large value is returned if this ratio is not less than one.
*
* RESLTS(2) = residual from the iterative refinement routine
* = the maximum of BERR / ( (n+1)*EPS + (*) ), where
* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations.
* = 'N': A * X = B (No transpose)
* = 'T': A'* X = B (Transpose)
* = 'C': A'* X = B (Conjugate transpose = Transpose)
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The number of rows of the matrices X, B, and XACT, and the
* order of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of columns of the matrices X, B, and XACT.
* NRHS >= 0.
*
* A (input) COMPLEX array, dimension (LDA,N)
* The triangular matrix A. If UPLO = 'U', the leading n by n
* upper triangular part of the array A contains the upper
* triangular matrix, and the strictly lower triangular part of
* A is not referenced. If UPLO = 'L', the leading n by n lower
* triangular part of the array A contains the lower triangular
* matrix, and the strictly upper triangular part of A is not
* referenced. If DIAG = 'U', the diagonal elements of A are
* also not referenced and are assumed to be 1.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* B (input) COMPLEX array, dimension (LDB,NRHS)
* The right hand side vectors for the system of linear
* equations.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* X (input) COMPLEX array, dimension (LDX,NRHS)
* The computed solution vectors. Each vector is stored as a
* column of the matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* XACT (input) COMPLEX array, dimension (LDX,NRHS)
* The exact solution vectors. Each vector is stored as a
* column of the matrix XACT.
*
* LDXACT (input) INTEGER
* The leading dimension of the array XACT. LDXACT >= max(1,N).
*
* FERR (input) REAL array, dimension (NRHS)
* The estimated forward error bounds for each solution vector
* X. If XTRUE is the true solution, FERR bounds the magnitude
* of the largest entry in (X - XTRUE) divided by the magnitude
* of the largest entry in X.
*
* BERR (input) REAL array, dimension (NRHS)
* The componentwise relative backward error of each solution
* vector (i.e., the smallest relative change in any entry of A
* or B that makes X an exact solution).
*
* RESLTS (output) REAL array, dimension (2)
* The maximum over the NRHS solution vectors of the ratios:
* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
* RESLTS(2) = BERR / ( (n+1)*EPS + (*) )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, UNIT, UPPER
INTEGER I, IFU, IMAX, J, K
REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
COMPLEX ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICAMAX
REAL SLAMCH
EXTERNAL LSAME, ICAMAX, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, MIN, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0.
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESLTS( 1 ) = ZERO
RESLTS( 2 ) = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
UNIT = LSAME( DIAG, 'U' )
*
* Test 1: Compute the maximum of
* norm(X - XACT) / ( norm(X) * FERR )
* over all the vectors X and XACT using the infinity-norm.
*
ERRBND = ZERO
DO 30 J = 1, NRHS
IMAX = ICAMAX( N, X( 1, J ), 1 )
XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
DIFF = ZERO
DO 10 I = 1, N
DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
10 CONTINUE
*
IF( XNORM.GT.ONE ) THEN
GO TO 20
ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
GO TO 20
ELSE
ERRBND = ONE / EPS
GO TO 30
END IF
*
20 CONTINUE
IF( DIFF / XNORM.LE.FERR( J ) ) THEN
ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
ELSE
ERRBND = ONE / EPS
END IF
30 CONTINUE
RESLTS( 1 ) = ERRBND
*
* Test 2: Compute the maximum of BERR / ( (n+1)*EPS + (*) ), where
* (*) = (n+1)*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*
IFU = 0
IF( UNIT )
$ IFU = 1
DO 90 K = 1, NRHS
DO 80 I = 1, N
TMP = CABS1( B( I, K ) )
IF( UPPER ) THEN
IF( .NOT.NOTRAN ) THEN
DO 40 J = 1, I - IFU
TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
40 CONTINUE
IF( UNIT )
$ TMP = TMP + CABS1( X( I, K ) )
ELSE
IF( UNIT )
$ TMP = TMP + CABS1( X( I, K ) )
DO 50 J = I + IFU, N
TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
50 CONTINUE
END IF
ELSE
IF( NOTRAN ) THEN
DO 60 J = 1, I - IFU
TMP = TMP + CABS1( A( I, J ) )*CABS1( X( J, K ) )
60 CONTINUE
IF( UNIT )
$ TMP = TMP + CABS1( X( I, K ) )
ELSE
IF( UNIT )
$ TMP = TMP + CABS1( X( I, K ) )
DO 70 J = I + IFU, N
TMP = TMP + CABS1( A( J, I ) )*CABS1( X( J, K ) )
70 CONTINUE
END IF
END IF
IF( I.EQ.1 ) THEN
AXBI = TMP
ELSE
AXBI = MIN( AXBI, TMP )
END IF
80 CONTINUE
TMP = BERR( K ) / ( ( N+1 )*EPS+( N+1 )*UNFL /
$ MAX( AXBI, ( N+1 )*UNFL ) )
IF( K.EQ.1 ) THEN
RESLTS( 2 ) = TMP
ELSE
RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
END IF
90 CONTINUE
*
RETURN
*
* End of CTRT05
*
END
|