1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
SUBROUTINE DGET02( TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER LDA, LDB, LDX, M, N, NRHS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), RWORK( * ),
$ X( LDX, * )
* ..
*
* Purpose
* =======
*
* DGET02 computes the residual for a solution of a system of linear
* equations A*x = b or A'*x = b:
* RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations:
* = 'N': A *x = b
* = 'T': A'*x = b, where A' is the transpose of A
* = 'C': A'*x = b, where A' is the transpose of A
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* NRHS (input) INTEGER
* The number of columns of B, the matrix of right hand sides.
* NRHS >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The original M x N matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* X (input) DOUBLE PRECISION array, dimension (LDX,NRHS)
* The computed solution vectors for the system of linear
* equations.
*
* LDX (input) INTEGER
* The leading dimension of the array X. If TRANS = 'N',
* LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the right hand side vectors for the system of
* linear equations.
* On exit, B is overwritten with the difference B - A*X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. IF TRANS = 'N',
* LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (M)
*
* RESID (output) DOUBLE PRECISION
* The maximum over the number of right hand sides of
* norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J, N1, N2
DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DASUM, DLAMCH, DLANGE
EXTERNAL LSAME, DASUM, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0 or NRHS = 0
*
IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.EQ.0 ) THEN
RESID = ZERO
RETURN
END IF
*
IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
N1 = N
N2 = M
ELSE
N1 = M
N2 = N
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = DLANGE( '1', N1, N2, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute B - A*X (or B - A'*X ) and store in B.
*
CALL DGEMM( TRANS, 'No transpose', N1, NRHS, N2, -ONE, A, LDA, X,
$ LDX, ONE, B, LDB )
*
* Compute the maximum over the number of right hand sides of
* norm(B - A*X) / ( norm(A) * norm(X) * EPS ) .
*
RESID = ZERO
DO 10 J = 1, NRHS
BNORM = DASUM( N1, B( 1, J ), 1 )
XNORM = DASUM( N2, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
10 CONTINUE
*
RETURN
*
* End of DGET02
*
END
|