1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
SUBROUTINE DPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
* Purpose
* =======
*
* DPOT01 reconstructs a symmetric positive definite matrix A from
* its L*L' or U'*U factorization and computes the residual
* norm( L*L' - A ) / ( N * norm(A) * EPS ) or
* norm( U'*U - A ) / ( N * norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (LDA,N)
* The original symmetric matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N)
*
* AFAC (input/output) DOUBLE PRECISION array, dimension (LDAFAC,N)
* On entry, the factor L or U from the L*L' or U'*U
* factorization of A.
* Overwritten with the reconstructed matrix, and then with the
* difference L*L' - A (or U'*U - A).
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESID (output) DOUBLE PRECISION
* If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
DOUBLE PRECISION ANORM, EPS, T
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT, DLAMCH, DLANSY
EXTERNAL LSAME, DDOT, DLAMCH, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DSYR, DTRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 10 K = N, 1, -1
*
* Compute the (K,K) element of the result.
*
T = DDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
AFAC( K, K ) = T
*
* Compute the rest of column K.
*
CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
*
10 CONTINUE
*
* Compute the product L*L', overwriting L.
*
ELSE
DO 20 K = N, 1, -1
*
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( K+1.LE.N )
$ CALL DSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
$ AFAC( K+1, K+1 ), LDAFAC )
*
* Scale column K by the diagonal element.
*
T = AFAC( K, K )
CALL DSCAL( N-K+1, T, AFAC( K, K ), 1 )
*
20 CONTINUE
END IF
*
* Compute the difference L*L' - A (or U'*U - A).
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 40 J = 1, N
DO 30 I = 1, J
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
30 CONTINUE
40 CONTINUE
ELSE
DO 60 J = 1, N
DO 50 I = J, N
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
50 CONTINUE
60 CONTINUE
END IF
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
RESID = DLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK )
*
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of DPOT01
*
END
|