File: dpot01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (161 lines) | stat: -rw-r--r-- 4,549 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
      SUBROUTINE DPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DPOT01 reconstructs a symmetric positive definite matrix  A  from
*  its L*L' or U'*U factorization and computes the residual
*     norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*     norm( U'*U - A ) / ( N * norm(A) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA,N)
*          The original symmetric matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N)
*
*  AFAC    (input/output) DOUBLE PRECISION array, dimension (LDAFAC,N)
*          On entry, the factor L or U from the L*L' or U'*U
*          factorization of A.
*          Overwritten with the reconstructed matrix, and then with the
*          difference L*L' - A (or U'*U - A).
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESID   (output) DOUBLE PRECISION
*          If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      DOUBLE PRECISION   ANORM, EPS, T
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DDOT, DLAMCH, DLANSY
      EXTERNAL           LSAME, DDOT, DLAMCH, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DSCAL, DSYR, DTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = DLANSY( '1', UPLO, N, A, LDA, RWORK )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute the product U'*U, overwriting U.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 10 K = N, 1, -1
*
*           Compute the (K,K) element of the result.
*
            T = DDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
            AFAC( K, K ) = T
*
*           Compute the rest of column K.
*
            CALL DTRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
     $                  LDAFAC, AFAC( 1, K ), 1 )
*
   10    CONTINUE
*
*     Compute the product L*L', overwriting L.
*
      ELSE
         DO 20 K = N, 1, -1
*
*           Add a multiple of column K of the factor L to each of
*           columns K+1 through N.
*
            IF( K+1.LE.N )
     $         CALL DSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
     $                    AFAC( K+1, K+1 ), LDAFAC )
*
*           Scale column K by the diagonal element.
*
            T = AFAC( K, K )
            CALL DSCAL( N-K+1, T, AFAC( K, K ), 1 )
*
   20    CONTINUE
      END IF
*
*     Compute the difference  L*L' - A (or U'*U - A).
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 40 J = 1, N
            DO 30 I = 1, J
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   30       CONTINUE
   40    CONTINUE
      ELSE
         DO 60 J = 1, N
            DO 50 I = J, N
               AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   50       CONTINUE
   60    CONTINUE
      END IF
*
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
      RESID = DLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK )
*
      RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
*
      RETURN
*
*     End of DPOT01
*
      END