File: dspt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (146 lines) | stat: -rw-r--r-- 4,296 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
      SUBROUTINE DSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSPT01 reconstructs a symmetric indefinite packed matrix A from its
*  block L*D*L' or U*D*U' factorization and computes the residual
*       norm( C - A ) / ( N * norm(A) * EPS ),
*  where C is the reconstructed matrix and EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The original symmetric matrix A, stored as a packed
*          triangular matrix.
*
*  AFAC    (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
*          The factored form of the matrix A, stored as a packed
*          triangular matrix.  AFAC contains the block diagonal matrix D
*          and the multipliers used to obtain the factor L or U from the
*          block L*D*L' or U*D*U' factorization as computed by DSPTRF.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from DSPTRF.
*
*  C       (workspace) DOUBLE PRECISION array, dimension (LDC,N)
*
*  LDC     (integer) INTEGER
*          The leading dimension of the array C.  LDC >= max(1,N).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESID   (output) DOUBLE PRECISION
*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J, JC
      DOUBLE PRECISION   ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANSP, DLANSY
      EXTERNAL           LSAME, DLAMCH, DLANSP, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASET, DLAVSP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = DLANSP( '1', UPLO, N, A, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL DLASET( 'Full', N, N, ZERO, ONE, C, LDC )
*
*     Call DLAVSP to form the product D * U' (or D * L' ).
*
      CALL DLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Call DLAVSP again to multiply by U ( or L ).
*
      CALL DLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 0
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( JC+I )
   10       CONTINUE
            JC = JC + J
   20    CONTINUE
      ELSE
         JC = 1
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( JC+I-J )
   30       CONTINUE
            JC = JC + N - J + 1
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of DSPT01
*
      END