1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
SUBROUTINE DSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDC, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
* ..
*
* Purpose
* =======
*
* DSPT01 reconstructs a symmetric indefinite packed matrix A from its
* block L*D*L' or U*D*U' factorization and computes the residual
* norm( C - A ) / ( N * norm(A) * EPS ),
* where C is the reconstructed matrix and EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The original symmetric matrix A, stored as a packed
* triangular matrix.
*
* AFAC (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The factored form of the matrix A, stored as a packed
* triangular matrix. AFAC contains the block diagonal matrix D
* and the multipliers used to obtain the factor L or U from the
* block L*D*L' or U*D*U' factorization as computed by DSPTRF.
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from DSPTRF.
*
* C (workspace) DOUBLE PRECISION array, dimension (LDC,N)
*
* LDC (integer) INTEGER
* The leading dimension of the array C. LDC >= max(1,N).
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESID (output) DOUBLE PRECISION
* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J, JC
DOUBLE PRECISION ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANSP, DLANSY
EXTERNAL LSAME, DLAMCH, DLANSP, DLANSY
* ..
* .. External Subroutines ..
EXTERNAL DLASET, DLAVSP
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = DLANSP( '1', UPLO, N, A, RWORK )
*
* Initialize C to the identity matrix.
*
CALL DLASET( 'Full', N, N, ZERO, ONE, C, LDC )
*
* Call DLAVSP to form the product D * U' (or D * L' ).
*
CALL DLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
$ LDC, INFO )
*
* Call DLAVSP again to multiply by U ( or L ).
*
CALL DLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
$ LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
JC = 0
DO 20 J = 1, N
DO 10 I = 1, J
C( I, J ) = C( I, J ) - A( JC+I )
10 CONTINUE
JC = JC + J
20 CONTINUE
ELSE
JC = 1
DO 40 J = 1, N
DO 30 I = J, N
C( I, J ) = C( I, J ) - A( JC+I-J )
30 CONTINUE
JC = JC + N - J + 1
40 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = DLANSY( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of DSPT01
*
END
|