1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
SUBROUTINE SGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
$ RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER KL, KU, LDA, LDAFAC, M, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* SGBT01 reconstructs a band matrix A from its L*U factorization and
* computes the residual:
* norm(L*U - A) / ( N * norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* The expression L*U - A is computed one column at a time, so A and
* AFAC are not modified.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix A. N >= 0.
*
* KL (input) INTEGER
* The number of subdiagonals within the band of A. KL >= 0.
*
* KU (input) INTEGER
* The number of superdiagonals within the band of A. KU >= 0.
*
* A (input/output) REAL array, dimension (LDA,N)
* The original matrix A in band storage, stored in rows 1 to
* KL+KU+1.
*
* LDA (input) INTEGER.
* The leading dimension of the array A. LDA >= max(1,KL+KU+1).
*
* AFAC (input) REAL array, dimension (LDAFAC,N)
* The factored form of the matrix A. AFAC contains the banded
* factors L and U from the L*U factorization, as computed by
* SGBTRF. U is stored as an upper triangular band matrix with
* KL+KU superdiagonals in rows 1 to KL+KU+1, and the
* multipliers used during the factorization are stored in rows
* KL+KU+2 to 2*KL+KU+1. See SGBTRF for further details.
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC.
* LDAFAC >= max(1,2*KL*KU+1).
*
* IPIV (input) INTEGER array, dimension (min(M,N))
* The pivot indices from SGBTRF.
*
* WORK (workspace) REAL array, dimension (2*KL+KU+1)
*
* RESID (output) REAL
* norm(L*U - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
REAL ANORM, EPS, T
* ..
* .. External Functions ..
REAL SASUM, SLAMCH
EXTERNAL SASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0.
*
RESID = ZERO
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
KD = KU + 1
ANORM = ZERO
DO 10 J = 1, N
I1 = MAX( KD+1-J, 1 )
I2 = MIN( KD+M-J, KL+KD )
IF( I2.GE.I1 )
$ ANORM = MAX( ANORM, SASUM( I2-I1+1, A( I1, J ), 1 ) )
10 CONTINUE
*
* Compute one column at a time of L*U - A.
*
KD = KL + KU + 1
DO 40 J = 1, N
*
* Copy the J-th column of U to WORK.
*
JU = MIN( KL+KU, J-1 )
JL = MIN( KL, M-J )
LENJ = MIN( M, J ) - J + JU + 1
IF( LENJ.GT.0 ) THEN
CALL SCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
DO 20 I = LENJ + 1, JU + JL + 1
WORK( I ) = ZERO
20 CONTINUE
*
* Multiply by the unit lower triangular matrix L. Note that L
* is stored as a product of transformations and permutations.
*
DO 30 I = MIN( M-1, J ), J - JU, -1
IL = MIN( KL, M-I )
IF( IL.GT.0 ) THEN
IW = I - J + JU + 1
T = WORK( IW )
CALL SAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
$ 1 )
IP = IPIV( I )
IF( I.NE.IP ) THEN
IP = IP - J + JU + 1
WORK( IW ) = WORK( IP )
WORK( IP ) = T
END IF
END IF
30 CONTINUE
*
* Subtract the corresponding column of A.
*
JUA = MIN( JU, KU )
IF( JUA+JL+1.GT.0 )
$ CALL SAXPY( JUA+JL+1, -ONE, A( KU+1-JUA, J ), 1,
$ WORK( JU+1-JUA ), 1 )
*
* Compute the 1-norm of the column.
*
RESID = MAX( RESID, SASUM( JU+JL+1, WORK, 1 ) )
END IF
40 CONTINUE
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of SGBT01
*
END
|