File: sgbt02.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (154 lines) | stat: -rw-r--r-- 4,577 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
      SUBROUTINE SGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
     $                   LDB, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  SGBT02 computes the residual for a solution of a banded system of
*  equations  A*x = b  or  A'*x = b:
*     RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS).
*  where EPS is the machine precision.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          Specifies the form of the system of equations:
*          = 'N':  A *x = b
*          = 'T':  A'*x = b, where A' is the transpose of A
*          = 'C':  A'*x = b, where A' is the transpose of A
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  KL      (input) INTEGER
*          The number of subdiagonals within the band of A.  KL >= 0.
*
*  KU      (input) INTEGER
*          The number of superdiagonals within the band of A.  KU >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B.  NRHS >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The original matrix A in band storage, stored in rows 1 to
*          KL+KU+1.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
*
*  X       (input) REAL array, dimension (LDX,NRHS)
*          The computed solution vectors for the system of linear
*          equations.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.  If TRANS = 'N',
*          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the right hand side vectors for the system of
*          linear equations.
*          On exit, B is overwritten with the difference B - A*X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B.  IF TRANS = 'N',
*          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*
*  RESID   (output) REAL
*          The maximum over the number of right hand sides of
*          norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I1, I2, J, KD, N1
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SASUM, SLAMCH
      EXTERNAL           LSAME, SASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGBMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if N = 0 pr NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      KD = KU + 1
      ANORM = ZERO
      DO 10 J = 1, N
         I1 = MAX( KD+1-J, 1 )
         I2 = MIN( KD+M-J, KL+KD )
         ANORM = MAX( ANORM, SASUM( I2-I1+1, A( I1, J ), 1 ) )
   10 CONTINUE
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         N1 = N
      ELSE
         N1 = M
      END IF
*
*     Compute  B - A*X (or  B - A'*X )
*
      DO 20 J = 1, NRHS
         CALL SGBMV( TRANS, M, N, KL, KU, -ONE, A, LDA, X( 1, J ), 1,
     $               ONE, B( 1, J ), 1 )
   20 CONTINUE
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
      RESID = ZERO
      DO 30 J = 1, NRHS
         BNORM = SASUM( N1, B( 1, J ), 1 )
         XNORM = SASUM( N1, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   30 CONTINUE
*
      RETURN
*
*     End of SGBT02
*
      END