1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
SUBROUTINE SGBT05( TRANS, N, KL, KU, NRHS, AB, LDAB, B, LDB, X,
$ LDX, XACT, LDXACT, FERR, BERR, RESLTS )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER KL, KU, LDAB, LDB, LDX, LDXACT, N, NRHS
* ..
* .. Array Arguments ..
REAL AB( LDAB, * ), B( LDB, * ), BERR( * ),
$ FERR( * ), RESLTS( * ), X( LDX, * ),
$ XACT( LDXACT, * )
* ..
*
* Purpose
* =======
*
* SGBT05 tests the error bounds from iterative refinement for the
* computed solution to a system of equations op(A)*X = B, where A is a
* general band matrix of order n with kl subdiagonals and ku
* superdiagonals and op(A) = A or A**T, depending on TRANS.
*
* RESLTS(1) = test of the error bound
* = norm(X - XACT) / ( norm(X) * FERR )
*
* A large value is returned if this ratio is not less than one.
*
* RESLTS(2) = residual from the iterative refinement routine
* = the maximum of BERR / ( NZ*EPS + (*) ), where
* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
* and NZ = max. number of nonzeros in any row of A, plus 1
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* Specifies the form of the system of equations.
* = 'N': A * X = B (No transpose)
* = 'T': A**T * X = B (Transpose)
* = 'C': A**H * X = B (Conjugate transpose = Transpose)
*
* N (input) INTEGER
* The number of rows of the matrices X, B, and XACT, and the
* order of the matrix A. N >= 0.
*
* KL (input) INTEGER
* The number of subdiagonals within the band of A. KL >= 0.
*
* KU (input) INTEGER
* The number of superdiagonals within the band of A. KU >= 0.
*
* NRHS (input) INTEGER
* The number of columns of the matrices X, B, and XACT.
* NRHS >= 0.
*
* AB (input) REAL array, dimension (LDAB,N)
* The original band matrix A, stored in rows 1 to KL+KU+1.
* The j-th column of A is stored in the j-th column of the
* array AB as follows:
* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= KL+KU+1.
*
* B (input) REAL array, dimension (LDB,NRHS)
* The right hand side vectors for the system of linear
* equations.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* X (input) REAL array, dimension (LDX,NRHS)
* The computed solution vectors. Each vector is stored as a
* column of the matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X. LDX >= max(1,N).
*
* XACT (input) REAL array, dimension (LDX,NRHS)
* The exact solution vectors. Each vector is stored as a
* column of the matrix XACT.
*
* LDXACT (input) INTEGER
* The leading dimension of the array XACT. LDXACT >= max(1,N).
*
* FERR (input) REAL array, dimension (NRHS)
* The estimated forward error bounds for each solution vector
* X. If XTRUE is the true solution, FERR bounds the magnitude
* of the largest entry in (X - XTRUE) divided by the magnitude
* of the largest entry in X.
*
* BERR (input) REAL array, dimension (NRHS)
* The componentwise relative backward error of each solution
* vector (i.e., the smallest relative change in any entry of A
* or B that makes X an exact solution).
*
* RESLTS (output) REAL array, dimension (2)
* The maximum over the NRHS solution vectors of the ratios:
* RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
* RESLTS(2) = BERR / ( NZ*EPS + (*) )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN
INTEGER I, IMAX, J, K, NZ
REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SLAMCH
EXTERNAL LSAME, ISAMAX, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0.
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESLTS( 1 ) = ZERO
RESLTS( 2 ) = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
NOTRAN = LSAME( TRANS, 'N' )
NZ = MIN( KL+KU+2, N+1 )
*
* Test 1: Compute the maximum of
* norm(X - XACT) / ( norm(X) * FERR )
* over all the vectors X and XACT using the infinity-norm.
*
ERRBND = ZERO
DO 30 J = 1, NRHS
IMAX = ISAMAX( N, X( 1, J ), 1 )
XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
DIFF = ZERO
DO 10 I = 1, N
DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
10 CONTINUE
*
IF( XNORM.GT.ONE ) THEN
GO TO 20
ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
GO TO 20
ELSE
ERRBND = ONE / EPS
GO TO 30
END IF
*
20 CONTINUE
IF( DIFF / XNORM.LE.FERR( J ) ) THEN
ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
ELSE
ERRBND = ONE / EPS
END IF
30 CONTINUE
RESLTS( 1 ) = ERRBND
*
* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
* (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
*
DO 70 K = 1, NRHS
DO 60 I = 1, N
TMP = ABS( B( I, K ) )
IF( NOTRAN ) THEN
DO 40 J = MAX( I-KL, 1 ), MIN( I+KU, N )
TMP = TMP + ABS( AB( KU+1+I-J, J ) )*ABS( X( J, K ) )
40 CONTINUE
ELSE
DO 50 J = MAX( I-KU, 1 ), MIN( I+KL, N )
TMP = TMP + ABS( AB( KU+1+J-I, I ) )*ABS( X( J, K ) )
50 CONTINUE
END IF
IF( I.EQ.1 ) THEN
AXBI = TMP
ELSE
AXBI = MIN( AXBI, TMP )
END IF
60 CONTINUE
TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
IF( K.EQ.1 ) THEN
RESLTS( 2 ) = TMP
ELSE
RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
END IF
70 CONTINUE
*
RETURN
*
* End of SGBT05
*
END
|