File: sgeqrs.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (121 lines) | stat: -rw-r--r-- 3,308 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
      SUBROUTINE SGEQRS( M, N, NRHS, A, LDA, TAU, B, LDB, WORK, LWORK,
     $                   INFO )
*
*  -- LAPACK routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), B( LDB, * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  Solve the least squares problem
*      min || A*X - B ||
*  using the QR factorization
*      A = Q*R
*  computed by SGEQRF.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  M >= N >= 0.
*
*  NRHS    (input) INTEGER
*          The number of columns of B.  NRHS >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          Details of the QR factorization of the original matrix A as
*          returned by SGEQRF.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= M.
*
*  TAU     (input) REAL array, dimension (N)
*          Details of the orthogonal matrix Q.
*
*  B       (input/output) REAL array, dimension (LDB,NRHS)
*          On entry, the m-by-nrhs right hand side matrix B.
*          On exit, the n-by-nrhs solution matrix X.
*
*  LDB     (input) INTEGER
*          The leading dimension of the array B. LDB >= M.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The length of the array WORK.  LWORK must be at least NRHS,
*          and should be at least NRHS*NB, where NB is the block size
*          for this environment.
*
*  INFO    (output) INTEGER
*          = 0: successful exit
*          < 0: if INFO = -i, the i-th argument had an illegal value
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      PARAMETER          ( ONE = 1.0E+0 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORMQR, STRSM, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments.
*
      INFO = 0
      IF( M.LT.0 ) THEN
         INFO = -1
      ELSE IF( N.LT.0 .OR. N.GT.M ) THEN
         INFO = -2
      ELSE IF( NRHS.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -5
      ELSE IF( LDB.LT.MAX( 1, M ) ) THEN
         INFO = -8
      ELSE IF( LWORK.LT.1 .OR. LWORK.LT.NRHS .AND. M.GT.0 .AND. N.GT.0 )
     $          THEN
         INFO = -10
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGEQRS', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 .OR. NRHS.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
*     B := Q' * B
*
      CALL SORMQR( 'Left', 'Transpose', M, NRHS, N, A, LDA, TAU, B, LDB,
     $             WORK, LWORK, INFO )
*
*     Solve R*X = B(1:n,:)
*
      CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, NRHS,
     $            ONE, A, LDA, B, LDB )
*
      RETURN
*
*     End of SGEQRS
*
      END