1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
SUBROUTINE SGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
$ LDWORK, RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
INTEGER LDWORK, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
$ DU2( * ), DUF( * ), RWORK( * ),
$ WORK( LDWORK, * )
* ..
*
* Purpose
* =======
*
* SGTT01 reconstructs a tridiagonal matrix A from its LU factorization
* and computes the residual
* norm(L*U - A) / ( norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* =========
*
* N (input) INTEGTER
* The order of the matrix A. N >= 0.
*
* DL (input) REAL array, dimension (N-1)
* The (n-1) sub-diagonal elements of A.
*
* D (input) REAL array, dimension (N)
* The diagonal elements of A.
*
* DU (input) REAL array, dimension (N-1)
* The (n-1) super-diagonal elements of A.
*
* DLF (input) REAL array, dimension (N-1)
* The (n-1) multipliers that define the matrix L from the
* LU factorization of A.
*
* DF (input) REAL array, dimension (N)
* The n diagonal elements of the upper triangular matrix U from
* the LU factorization of A.
*
* DUF (input) REAL array, dimension (N-1)
* The (n-1) elements of the first super-diagonal of U.
*
* DU2F (input) REAL array, dimension (N-2)
* The (n-2) elements of the second super-diagonal of U.
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices; for 1 <= i <= n, row i of the matrix was
* interchanged with row IPIV(i). IPIV(i) will always be either
* i or i+1; IPIV(i) = i indicates a row interchange was not
* required.
*
* WORK (workspace) REAL array, dimension (LDWORK,N)
*
* LDWORK (input) INTEGER
* The leading dimension of the array WORK. LDWORK >= max(1,N).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* The scaled residual: norm(L*U - A) / (norm(A) * EPS)
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, IP, J, LASTJ
REAL ANORM, EPS, LI
* ..
* .. External Functions ..
REAL SLAMCH, SLANGT, SLANHS
EXTERNAL SLAMCH, SLANGT, SLANHS
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. External Subroutines ..
EXTERNAL SAXPY, SSWAP
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
* Copy the matrix U to WORK.
*
DO 20 J = 1, N
DO 10 I = 1, N
WORK( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
DO 30 I = 1, N
IF( I.EQ.1 ) THEN
WORK( I, I ) = DF( I )
IF( N.GE.2 )
$ WORK( I, I+1 ) = DUF( I )
IF( N.GE.3 )
$ WORK( I, I+2 ) = DU2( I )
ELSE IF( I.EQ.N ) THEN
WORK( I, I ) = DF( I )
ELSE
WORK( I, I ) = DF( I )
WORK( I, I+1 ) = DUF( I )
IF( I.LT.N-1 )
$ WORK( I, I+2 ) = DU2( I )
END IF
30 CONTINUE
*
* Multiply on the left by L.
*
LASTJ = N
DO 40 I = N - 1, 1, -1
LI = DLF( I )
CALL SAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
$ WORK( I+1, I ), LDWORK )
IP = IPIV( I )
IF( IP.EQ.I ) THEN
LASTJ = MIN( I+2, N )
ELSE
CALL SSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
$ LDWORK )
END IF
40 CONTINUE
*
* Subtract the matrix A.
*
WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
IF( N.GT.1 ) THEN
WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
WORK( N, N ) = WORK( N, N ) - D( N )
DO 50 I = 2, N - 1
WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
WORK( I, I ) = WORK( I, I ) - D( I )
WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
50 CONTINUE
END IF
*
* Compute the 1-norm of the tridiagonal matrix A.
*
ANORM = SLANGT( '1', N, DL, D, DU )
*
* Compute the 1-norm of WORK, which is only guaranteed to be
* upper Hessenberg.
*
RESID = SLANHS( '1', N, WORK, LDWORK, RWORK )
*
* Compute norm(L*U - A) / (norm(A) * EPS)
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( RESID / ANORM ) / EPS
END IF
*
RETURN
*
* End of SGTT01
*
END
|