File: sgtt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (180 lines) | stat: -rw-r--r-- 5,189 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
      SUBROUTINE SGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
     $                   LDWORK, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      INTEGER            LDWORK, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
     $                   DU2( * ), DUF( * ), RWORK( * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  Purpose
*  =======
*
*  SGTT01 reconstructs a tridiagonal matrix A from its LU factorization
*  and computes the residual
*     norm(L*U - A) / ( norm(A) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  =========
*
*  N       (input) INTEGTER
*          The order of the matrix A.  N >= 0.
*
*  DL      (input) REAL array, dimension (N-1)
*          The (n-1) sub-diagonal elements of A.
*
*  D       (input) REAL array, dimension (N)
*          The diagonal elements of A.
*
*  DU      (input) REAL array, dimension (N-1)
*          The (n-1) super-diagonal elements of A.
*
*  DLF     (input) REAL array, dimension (N-1)
*          The (n-1) multipliers that define the matrix L from the
*          LU factorization of A.
*
*  DF      (input) REAL array, dimension (N)
*          The n diagonal elements of the upper triangular matrix U from
*          the LU factorization of A.
*
*  DUF     (input) REAL array, dimension (N-1)
*          The (n-1) elements of the first super-diagonal of U.
*
*  DU2F    (input) REAL array, dimension (N-2)
*          The (n-2) elements of the second super-diagonal of U.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices; for 1 <= i <= n, row i of the matrix was
*          interchanged with row IPIV(i).  IPIV(i) will always be either
*          i or i+1; IPIV(i) = i indicates a row interchange was not
*          required.
*
*  WORK    (workspace) REAL array, dimension (LDWORK,N)
*
*  LDWORK  (input) INTEGER
*          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          The scaled residual:  norm(L*U - A) / (norm(A) * EPS)
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, IP, J, LASTJ
      REAL               ANORM, EPS, LI
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGT, SLANHS
      EXTERNAL           SLAMCH, SLANGT, SLANHS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SSWAP
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the matrix U to WORK.
*
      DO 20 J = 1, N
         DO 10 I = 1, N
            WORK( I, J ) = ZERO
   10    CONTINUE
   20 CONTINUE
      DO 30 I = 1, N
         IF( I.EQ.1 ) THEN
            WORK( I, I ) = DF( I )
            IF( N.GE.2 )
     $         WORK( I, I+1 ) = DUF( I )
            IF( N.GE.3 )
     $         WORK( I, I+2 ) = DU2( I )
         ELSE IF( I.EQ.N ) THEN
            WORK( I, I ) = DF( I )
         ELSE
            WORK( I, I ) = DF( I )
            WORK( I, I+1 ) = DUF( I )
            IF( I.LT.N-1 )
     $         WORK( I, I+2 ) = DU2( I )
         END IF
   30 CONTINUE
*
*     Multiply on the left by L.
*
      LASTJ = N
      DO 40 I = N - 1, 1, -1
         LI = DLF( I )
         CALL SAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
     $               WORK( I+1, I ), LDWORK )
         IP = IPIV( I )
         IF( IP.EQ.I ) THEN
            LASTJ = MIN( I+2, N )
         ELSE
            CALL SSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
     $                  LDWORK )
         END IF
   40 CONTINUE
*
*     Subtract the matrix A.
*
      WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
      IF( N.GT.1 ) THEN
         WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
         WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
         WORK( N, N ) = WORK( N, N ) - D( N )
         DO 50 I = 2, N - 1
            WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
            WORK( I, I ) = WORK( I, I ) - D( I )
            WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
   50    CONTINUE
      END IF
*
*     Compute the 1-norm of the tridiagonal matrix A.
*
      ANORM = SLANGT( '1', N, DL, D, DU )
*
*     Compute the 1-norm of WORK, which is only guaranteed to be
*     upper Hessenberg.
*
      RESID = SLANHS( '1', N, WORK, LDWORK, RWORK )
*
*     Compute norm(L*U - A) / (norm(A) * EPS)
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( RESID / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of SGTT01
*
      END