1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
|
SUBROUTINE SPPT01( UPLO, N, A, AFAC, RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER N
REAL RESID
* ..
* .. Array Arguments ..
REAL A( * ), AFAC( * ), RWORK( * )
* ..
*
* Purpose
* =======
*
* SPPT01 reconstructs a symmetric positive definite packed matrix A
* from its L*L' or U'*U factorization and computes the residual
* norm( L*L' - A ) / ( N * norm(A) * EPS ) or
* norm( U'*U - A ) / ( N * norm(A) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* symmetric matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) REAL array, dimension (N*(N+1)/2)
* The original symmetric matrix A, stored as a packed
* triangular matrix.
*
* AFAC (input/output) REAL array, dimension (N*(N+1)/2)
* On entry, the factor L or U from the L*L' or U'*U
* factorization of A, stored as a packed triangular matrix.
* Overwritten with the reconstructed matrix, and then with the
* difference L*L' - A (or U'*U - A).
*
* RWORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, K, KC, NPP
REAL ANORM, EPS, T
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT, SLAMCH, SLANSP
EXTERNAL LSAME, SDOT, SLAMCH, SLANSP
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SSPR, STPMV
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSP( '1', UPLO, N, A, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
KC = ( N*( N-1 ) ) / 2 + 1
DO 10 K = N, 1, -1
*
* Compute the (K,K) element of the result.
*
T = SDOT( K, AFAC( KC ), 1, AFAC( KC ), 1 )
AFAC( KC+K-1 ) = T
*
* Compute the rest of column K.
*
IF( K.GT.1 ) THEN
CALL STPMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
$ AFAC( KC ), 1 )
KC = KC - ( K-1 )
END IF
10 CONTINUE
*
* Compute the product L*L', overwriting L.
*
ELSE
KC = ( N*( N+1 ) ) / 2
DO 20 K = N, 1, -1
*
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( K.LT.N )
$ CALL SSPR( 'Lower', N-K, ONE, AFAC( KC+1 ), 1,
$ AFAC( KC+N-K+1 ) )
*
* Scale column K by the diagonal element.
*
T = AFAC( KC )
CALL SSCAL( N-K+1, T, AFAC( KC ), 1 )
*
KC = KC - ( N-K+2 )
20 CONTINUE
END IF
*
* Compute the difference L*L' - A (or U'*U - A).
*
NPP = N*( N+1 ) / 2
DO 30 I = 1, NPP
AFAC( I ) = AFAC( I ) - A( I )
30 CONTINUE
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
RESID = SLANSP( '1', UPLO, N, AFAC, RWORK )
*
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of SPPT01
*
END
|