File: sqlt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (176 lines) | stat: -rw-r--r-- 5,246 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
      SUBROUTINE SQLT01( M, N, A, AF, Q, L, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AF( LDA, * ), L( LDA, * ),
     $                   Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  SQLT01 tests SGEQLF, which computes the QL factorization of an m-by-n
*  matrix A, and partially tests SORGQL which forms the m-by-m
*  orthogonal matrix Q.
*
*  SQLT01 compares L with Q'*A, and checks that Q is orthogonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The m-by-n matrix A.
*
*  AF      (output) REAL array, dimension (LDA,N)
*          Details of the QL factorization of A, as returned by SGEQLF.
*          See SGEQLF for further details.
*
*  Q       (output) REAL array, dimension (LDA,M)
*          The m-by-m orthogonal matrix Q.
*
*  L       (workspace) REAL array, dimension (LDA,max(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and R.
*          LDA >= max(M,N).
*
*  TAU     (output) REAL array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by SGEQLF.
*
*  WORK    (workspace) REAL array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) REAL array, dimension (M)
*
*  RESULT  (output) REAL array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( L - Q'*A ) / ( M * norm(A) * EPS )
*          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      REAL               ROGUE
      PARAMETER          ( ROGUE = -1.0E+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANGE, SLANSY
      EXTERNAL           SLAMCH, SLANGE, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGEMM, SGEQLF, SLACPY, SLASET, SORGQL, SSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*6        SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL SLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'SGEQLF'
      CALL SGEQLF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL SLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
      IF( M.GE.N ) THEN
         IF( N.LT.M .AND. N.GT.0 )
     $      CALL SLACPY( 'Full', M-N, N, AF, LDA, Q( 1, M-N+1 ), LDA )
         IF( N.GT.1 )
     $      CALL SLACPY( 'Upper', N-1, N-1, AF( M-N+1, 2 ), LDA,
     $                   Q( M-N+1, M-N+2 ), LDA )
      ELSE
         IF( M.GT.1 )
     $      CALL SLACPY( 'Upper', M-1, M-1, AF( 1, N-M+2 ), LDA,
     $                   Q( 1, 2 ), LDA )
      END IF
*
*     Generate the m-by-m matrix Q
*
      SRNAMT = 'SORGQL'
      CALL SORGQL( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy L
*
      CALL SLASET( 'Full', M, N, ZERO, ZERO, L, LDA )
      IF( M.GE.N ) THEN
         IF( N.GT.0 )
     $      CALL SLACPY( 'Lower', N, N, AF( M-N+1, 1 ), LDA,
     $                   L( M-N+1, 1 ), LDA )
      ELSE
         IF( N.GT.M .AND. M.GT.0 )
     $      CALL SLACPY( 'Full', M, N-M, AF, LDA, L, LDA )
         IF( M.GT.0 )
     $      CALL SLACPY( 'Lower', M, M, AF( 1, N-M+1 ), LDA,
     $                   L( 1, N-M+1 ), LDA )
      END IF
*
*     Compute L - Q'*A
*
      CALL SGEMM( 'Transpose', 'No transpose', M, N, M, -ONE, Q, LDA, A,
     $            LDA, ONE, L, LDA )
*
*     Compute norm( L - Q'*A ) / ( M * norm(A) * EPS ) .
*
      ANORM = SLANGE( '1', M, N, A, LDA, RWORK )
      RESID = SLANGE( '1', M, N, L, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q'*Q
*
      CALL SLASET( 'Full', M, M, ZERO, ONE, L, LDA )
      CALL SSYRK( 'Upper', 'Transpose', M, M, -ONE, Q, LDA, ONE, L,
     $            LDA )
*
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
      RESID = SLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
*
      RETURN
*
*     End of SQLT01
*
      END