1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
REAL FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
$ LDX, WORK, LWORK )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER LDA, LDX, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
REAL A( LDA, * ), WORK( LWORK ), X( LDX, * )
* ..
*
* Purpose
* =======
*
* SQRT14 checks whether X is in the row space of A or A'. It does so
* by scaling both X and A such that their norms are in the range
* [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
* (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
* and returning the norm of the trailing triangle, scaled by
* MAX(M,N,NRHS)*eps.
*
* Arguments
* =========
*
* TRANS (input) CHARACTER*1
* = 'N': No transpose, check for X in the row space of A
* = 'T': Transpose, check for X in the row space of A'.
*
* M (input) INTEGER
* The number of rows of the matrix A.
*
* N (input) INTEGER
* The number of columns of the matrix A.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of X.
*
* A (input) REAL array, dimension (LDA,N)
* The M-by-N matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A.
*
* X (input) REAL array, dimension (LDX,NRHS)
* If TRANS = 'N', the N-by-NRHS matrix X.
* IF TRANS = 'T', the M-by-NRHS matrix X.
*
* LDX (input) INTEGER
* The leading dimension of the array X.
*
* WORK (workspace) REAL array dimension (LWORK)
*
* LWORK (input) INTEGER
* length of workspace array required
* If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
* if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL TPSD
INTEGER I, INFO, J, LDWORK
REAL ANRM, ERR, XNRM
* ..
* .. Local Arrays ..
REAL RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANGE
EXTERNAL LSAME, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SGELQ2, SGEQR2, SLACPY, SLASCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
SQRT14 = ZERO
IF( LSAME( TRANS, 'N' ) ) THEN
LDWORK = M + NRHS
TPSD = .FALSE.
IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
CALL XERBLA( 'SQRT14', 10 )
RETURN
ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RETURN
END IF
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
LDWORK = M
TPSD = .TRUE.
IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
CALL XERBLA( 'SQRT14', 10 )
RETURN
ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
RETURN
END IF
ELSE
CALL XERBLA( 'SQRT14', 1 )
RETURN
END IF
*
* Copy and scale A
*
CALL SLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
ANRM = SLANGE( 'M', M, N, WORK, LDWORK, RWORK )
IF( ANRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
*
* Copy X or X' into the right place and scale it
*
IF( TPSD ) THEN
*
* Copy X into columns n+1:n+nrhs of work
*
CALL SLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
$ LDWORK )
XNRM = SLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
$ RWORK )
IF( XNRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
$ WORK( N*LDWORK+1 ), LDWORK, INFO )
ANRM = SLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
*
* Compute QR factorization of X
*
CALL SGEQR2( M, N+NRHS, WORK, LDWORK,
$ WORK( LDWORK*( N+NRHS )+1 ),
$ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
$ INFO )
*
* Compute largest entry in upper triangle of
* work(n+1:m,n+1:n+nrhs)
*
ERR = ZERO
DO 20 J = N + 1, N + NRHS
DO 10 I = N + 1, MIN( M, J )
ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
10 CONTINUE
20 CONTINUE
*
ELSE
*
* Copy X' into rows m+1:m+nrhs of work
*
DO 40 I = 1, N
DO 30 J = 1, NRHS
WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
30 CONTINUE
40 CONTINUE
*
XNRM = SLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
IF( XNRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
$ LDWORK, INFO )
*
* Compute LQ factorization of work
*
CALL SGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
$ WORK( LDWORK*( N+1 )+1 ), INFO )
*
* Compute largest entry in lower triangle in
* work(m+1:m+nrhs,m+1:n)
*
ERR = ZERO
DO 60 J = M + 1, N
DO 50 I = J, LDWORK
ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
50 CONTINUE
60 CONTINUE
*
END IF
*
SQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) )
*
RETURN
*
* End of SQRT14
*
END
|