File: sqrt14.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (192 lines) | stat: -rw-r--r-- 5,754 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
      REAL             FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
     $                 LDX, WORK, LWORK )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            LDA, LDX, LWORK, M, N, NRHS
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), WORK( LWORK ), X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  SQRT14 checks whether X is in the row space of A or A'.  It does so
*  by scaling both X and A such that their norms are in the range
*  [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
*  (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
*  and returning the norm of the trailing triangle, scaled by
*  MAX(M,N,NRHS)*eps.
*
*  Arguments
*  =========
*
*  TRANS   (input) CHARACTER*1
*          = 'N':  No transpose, check for X in the row space of A
*          = 'T':  Transpose, check for X in the row space of A'.
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.
*
*  NRHS    (input) INTEGER
*          The number of right hand sides, i.e., the number of columns
*          of X.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The M-by-N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.
*
*  X       (input) REAL array, dimension (LDX,NRHS)
*          If TRANS = 'N', the N-by-NRHS matrix X.
*          IF TRANS = 'T', the M-by-NRHS matrix X.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.
*
*  WORK    (workspace) REAL array dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          length of workspace array required
*          If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
*          if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            TPSD
      INTEGER            I, INFO, J, LDWORK
      REAL               ANRM, ERR, XNRM
*     ..
*     .. Local Arrays ..
      REAL               RWORK( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SGELQ2, SGEQR2, SLACPY, SLASCL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
      SQRT14 = ZERO
      IF( LSAME( TRANS, 'N' ) ) THEN
         LDWORK = M + NRHS
         TPSD = .FALSE.
         IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
            CALL XERBLA( 'SQRT14', 10 )
            RETURN
         ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
            RETURN
         END IF
      ELSE IF( LSAME( TRANS, 'T' ) ) THEN
         LDWORK = M
         TPSD = .TRUE.
         IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
            CALL XERBLA( 'SQRT14', 10 )
            RETURN
         ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
            RETURN
         END IF
      ELSE
         CALL XERBLA( 'SQRT14', 1 )
         RETURN
      END IF
*
*     Copy and scale A
*
      CALL SLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
      ANRM = SLANGE( 'M', M, N, WORK, LDWORK, RWORK )
      IF( ANRM.NE.ZERO )
     $   CALL SLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
*
*     Copy X or X' into the right place and scale it
*
      IF( TPSD ) THEN
*
*        Copy X into columns n+1:n+nrhs of work
*
         CALL SLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
     $                LDWORK )
         XNRM = SLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
     $          RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL SLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
     $                   WORK( N*LDWORK+1 ), LDWORK, INFO )
         ANRM = SLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
*
*        Compute QR factorization of X
*
         CALL SGEQR2( M, N+NRHS, WORK, LDWORK,
     $                WORK( LDWORK*( N+NRHS )+1 ),
     $                WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
     $                INFO )
*
*        Compute largest entry in upper triangle of
*        work(n+1:m,n+1:n+nrhs)
*
         ERR = ZERO
         DO 20 J = N + 1, N + NRHS
            DO 10 I = N + 1, MIN( M, J )
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
   10       CONTINUE
   20    CONTINUE
*
      ELSE
*
*        Copy X' into rows m+1:m+nrhs of work
*
         DO 40 I = 1, N
            DO 30 J = 1, NRHS
               WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
   30       CONTINUE
   40    CONTINUE
*
         XNRM = SLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
         IF( XNRM.NE.ZERO )
     $      CALL SLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
     $                   LDWORK, INFO )
*
*        Compute LQ factorization of work
*
         CALL SGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
     $                WORK( LDWORK*( N+1 )+1 ), INFO )
*
*        Compute largest entry in lower triangle in
*        work(m+1:m+nrhs,m+1:n)
*
         ERR = ZERO
         DO 60 J = M + 1, N
            DO 50 I = J, LDWORK
               ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
   50       CONTINUE
   60    CONTINUE
*
      END IF
*
      SQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) )
*
      RETURN
*
*     End of SQRT14
*
      END