1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
SUBROUTINE SRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* Purpose
* =======
*
* SRQT02 tests SORGRQ, which generates an m-by-n matrix Q with
* orthonornmal rows that is defined as the product of k elementary
* reflectors.
*
* Given the RQ factorization of an m-by-n matrix A, SRQT02 generates
* the orthogonal matrix Q defined by the factorization of the last k
* rows of A; it compares R(m-k+1:m,n-m+1:n) with
* A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
* orthonormal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows of the matrix Q to be generated. M >= 0.
*
* N (input) INTEGER
* The number of columns of the matrix Q to be generated.
* N >= M >= 0.
*
* K (input) INTEGER
* The number of elementary reflectors whose product defines the
* matrix Q. M >= K >= 0.
*
* A (input) REAL array, dimension (LDA,N)
* The m-by-n matrix A which was factorized by SRQT01.
*
* AF (input) REAL array, dimension (LDA,N)
* Details of the RQ factorization of A, as returned by SGERQF.
* See SGERQF for further details.
*
* Q (workspace) REAL array, dimension (LDA,N)
*
* R (workspace) REAL array, dimension (LDA,M)
*
* LDA (input) INTEGER
* The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*
* TAU (input) REAL array, dimension (M)
* The scalar factors of the elementary reflectors corresponding
* to the RQ factorization in AF.
*
* WORK (workspace) REAL array, dimension (LWORK)
*
* LWORK (input) INTEGER
* The dimension of the array WORK.
*
* RWORK (workspace) REAL array, dimension (M)
*
* RESULT (output) REAL array, dimension (2)
* The test ratios:
* RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
* RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
REAL ROGUE
PARAMETER ( ROGUE = -1.0E+10 )
* ..
* .. Local Scalars ..
INTEGER INFO
REAL ANORM, EPS, RESID
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE, SLANSY
EXTERNAL SLAMCH, SLANGE, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLACPY, SLASET, SORGRQ, SSYRK
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Scalars in Common ..
CHARACTER*6 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
* Copy the last k rows of the factorization to the array Q
*
CALL SLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
IF( K.LT.N )
$ CALL SLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
$ Q( M-K+1, 1 ), LDA )
IF( K.GT.1 )
$ CALL SLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
$ Q( M-K+2, N-K+1 ), LDA )
*
* Generate the last n rows of the matrix Q
*
SRNAMT = 'SORGRQ'
CALL SORGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
*
* Copy R(m-k+1:m,n-m+1:n)
*
CALL SLASET( 'Full', K, M, ZERO, ZERO, R( M-K+1, N-M+1 ), LDA )
CALL SLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
$ R( M-K+1, N-K+1 ), LDA )
*
* Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
*
CALL SGEMM( 'No transpose', 'Transpose', K, M, N, -ONE,
$ A( M-K+1, 1 ), LDA, Q, LDA, ONE, R( M-K+1, N-M+1 ),
$ LDA )
*
* Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = SLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
RESID = SLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL SLASET( 'Full', M, M, ZERO, ONE, R, LDA )
CALL SSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = SLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of SRQT02
*
END
|