File: sspt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (146 lines) | stat: -rw-r--r-- 4,236 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
      SUBROUTINE SSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDC, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               A( * ), AFAC( * ), C( LDC, * ), RWORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SSPT01 reconstructs a symmetric indefinite packed matrix A from its
*  block L*D*L' or U*D*U' factorization and computes the residual
*       norm( C - A ) / ( N * norm(A) * EPS ),
*  where C is the reconstructed matrix and EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          symmetric matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) REAL array, dimension (N*(N+1)/2)
*          The original symmetric matrix A, stored as a packed
*          triangular matrix.
*
*  AFAC    (input) REAL array, dimension (N*(N+1)/2)
*          The factored form of the matrix A, stored as a packed
*          triangular matrix.  AFAC contains the block diagonal matrix D
*          and the multipliers used to obtain the factor L or U from the
*          block L*D*L' or U*D*U' factorization as computed by SSPTRF.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from SSPTRF.
*
*  C       (workspace) REAL array, dimension (LDC,N)
*
*  LDC     (integer) INTEGER
*          The leading dimension of the array C.  LDC >= max(1,N).
*
*  RWORK   (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J, JC
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANSP, SLANSY
      EXTERNAL           LSAME, SLAMCH, SLANSP, SLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLAVSP, SLASET
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = SLANSP( '1', UPLO, N, A, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
*
*     Call SLAVSP to form the product D * U' (or D * L' ).
*
      CALL SLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Call SLAVSP again to multiply by U ( or L ).
*
      CALL SLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 0
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( JC+I )
   10       CONTINUE
            JC = JC + J
   20    CONTINUE
      ELSE
         JC = 1
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( JC+I-J )
   30       CONTINUE
            JC = JC + N - J + 1
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of SSPT01
*
      END