File: stpt06.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (131 lines) | stat: -rw-r--r-- 4,010 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
      SUBROUTINE STPT06( RCOND, RCONDC, UPLO, DIAG, N, AP, WORK, RAT )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            N
      REAL               RAT, RCOND, RCONDC
*     ..
*     .. Array Arguments ..
      REAL               AP( * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  STPT06 computes a test ratio comparing RCOND (the reciprocal
*  condition number of a triangular matrix A) and RCONDC, the estimate
*  computed by STPCON.  Information about the triangular matrix A is
*  used if one estimate is zero and the other is non-zero to decide if
*  underflow in the estimate is justified.
*
*  Arguments
*  =========
*
*  RCOND   (input) REAL
*          The estimate of the reciprocal condition number obtained by
*          forming the explicit inverse of the matrix A and computing
*          RCOND = 1/( norm(A) * norm(inv(A)) ).
*
*  RCONDC  (input) REAL
*          The estimate of the reciprocal condition number computed by
*          STPCON.
*
*  UPLO    (input) CHARACTER
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  DIAG    (input) CHARACTER
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  AP      (input) REAL array, dimension (N*(N+1)/2)
*          The upper or lower triangular matrix A, packed columnwise in
*          a linear array.  The j-th column of A is stored in the array
*          AP as follows:
*          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L',
*             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  RAT     (output) REAL
*          The test ratio.  If both RCOND and RCONDC are nonzero,
*             RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1.
*          If RAT = 0, the two estimates are exactly the same.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               ANORM, BIGNUM, EPS, RMAX, RMIN, SMLNUM
*     ..
*     .. External Functions ..
      REAL               SLAMCH, SLANTP
      EXTERNAL           SLAMCH, SLANTP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. External Subroutines ..
      EXTERNAL           SLABAD
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
      RMAX = MAX( RCOND, RCONDC )
      RMIN = MIN( RCOND, RCONDC )
*
*     Do the easy cases first.
*
      IF( RMIN.LT.ZERO ) THEN
*
*        Invalid value for RCOND or RCONDC, return 1/EPS.
*
         RAT = ONE / EPS
*
      ELSE IF( RMIN.GT.ZERO ) THEN
*
*        Both estimates are positive, return RMAX/RMIN - 1.
*
         RAT = RMAX / RMIN - ONE
*
      ELSE IF( RMAX.EQ.ZERO ) THEN
*
*        Both estimates zero.
*
         RAT = ZERO
*
      ELSE
*
*        One estimate is zero, the other is non-zero.  If the matrix is
*        ill-conditioned, return the nonzero estimate multiplied by
*        1/EPS; if the matrix is badly scaled, return the nonzero
*        estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum
*        element in absolute value in A.
*
         SMLNUM = SLAMCH( 'Safe minimum' )
         BIGNUM = ONE / SMLNUM
         CALL SLABAD( SMLNUM, BIGNUM )
         ANORM = SLANTP( 'M', UPLO, DIAG, N, AP, WORK )
*
         RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) )
      END IF
*
      RETURN
*
*     End of STPT06
*
      END