File: strt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (153 lines) | stat: -rw-r--r-- 4,689 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
      SUBROUTINE STRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
     $                   WORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     February 29, 1992
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            LDA, LDAINV, N
      REAL               RCOND, RESID
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), AINV( LDAINV, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  STRT01 computes the residual for a triangular matrix A times its
*  inverse:
*     RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the matrix A is upper or lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  DIAG    (input) CHARACTER*1
*          Specifies whether or not the matrix A is unit triangular.
*          = 'N':  Non-unit triangular
*          = 'U':  Unit triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The triangular matrix A.  If UPLO = 'U', the leading n by n
*          upper triangular part of the array A contains the upper
*          triangular matrix, and the strictly lower triangular part of
*          A is not referenced.  If UPLO = 'L', the leading n by n lower
*          triangular part of the array A contains the lower triangular
*          matrix, and the strictly upper triangular part of A is not
*          referenced.  If DIAG = 'U', the diagonal elements of A are
*          also not referenced and are assumed to be 1.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N).
*
*  AINV    (input/output) REAL array, dimension (LDAINV,N)
*          On entry, the (triangular) inverse of the matrix A, in the
*          same storage format as A.
*          On exit, the contents of AINV are destroyed.
*
*  LDAINV  (input) INTEGER
*          The leading dimension of the array AINV.  LDAINV >= max(1,N).
*
*  RCOND   (output) REAL
*          The reciprocal condition number of A, computed as
*          1/(norm(A) * norm(AINV)).
*
*  WORK    (workspace) REAL array, dimension (N)
*
*  RESID   (output) REAL
*          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SLAMCH, SLANTR
      EXTERNAL           LSAME, SLAMCH, SLANTR
*     ..
*     .. External Subroutines ..
      EXTERNAL           STRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = SLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK )
      AINVNM = SLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, WORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE / ANORM ) / AINVNM
*
*     Set the diagonal of AINV to 1 if AINV has unit diagonal.
*
      IF( LSAME( DIAG, 'U' ) ) THEN
         DO 10 J = 1, N
            AINV( J, J ) = ONE
   10    CONTINUE
      END IF
*
*     Compute A * AINV, overwriting AINV.
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            CALL STRMV( 'Upper', 'No transpose', DIAG, J, A, LDA,
     $                  AINV( 1, J ), 1 )
   20    CONTINUE
      ELSE
         DO 30 J = 1, N
            CALL STRMV( 'Lower', 'No transpose', DIAG, N-J+1, A( J, J ),
     $                  LDA, AINV( J, J ), 1 )
   30    CONTINUE
      END IF
*
*     Subtract 1 from each diagonal element to form A*AINV - I.
*
      DO 40 J = 1, N
         AINV( J, J ) = AINV( J, J ) - ONE
   40 CONTINUE
*
*     Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = SLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, WORK )
*
      RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
*
      RETURN
*
*     End of STRT01
*
      END