1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
|
SUBROUTINE STRT01( UPLO, DIAG, N, A, LDA, AINV, LDAINV, RCOND,
$ WORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* February 29, 1992
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER LDA, LDAINV, N
REAL RCOND, RESID
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AINV( LDAINV, * ), WORK( * )
* ..
*
* Purpose
* =======
*
* STRT01 computes the residual for a triangular matrix A times its
* inverse:
* RESID = norm( A*AINV - I ) / ( N * norm(A) * norm(AINV) * EPS ),
* where EPS is the machine epsilon.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* A (input) REAL array, dimension (LDA,N)
* The triangular matrix A. If UPLO = 'U', the leading n by n
* upper triangular part of the array A contains the upper
* triangular matrix, and the strictly lower triangular part of
* A is not referenced. If UPLO = 'L', the leading n by n lower
* triangular part of the array A contains the lower triangular
* matrix, and the strictly upper triangular part of A is not
* referenced. If DIAG = 'U', the diagonal elements of A are
* also not referenced and are assumed to be 1.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N).
*
* AINV (input/output) REAL array, dimension (LDAINV,N)
* On entry, the (triangular) inverse of the matrix A, in the
* same storage format as A.
* On exit, the contents of AINV are destroyed.
*
* LDAINV (input) INTEGER
* The leading dimension of the array AINV. LDAINV >= max(1,N).
*
* RCOND (output) REAL
* The reciprocal condition number of A, computed as
* 1/(norm(A) * norm(AINV)).
*
* WORK (workspace) REAL array, dimension (N)
*
* RESID (output) REAL
* norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J
REAL AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANTR
EXTERNAL LSAME, SLAMCH, SLANTR
* ..
* .. External Subroutines ..
EXTERNAL STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANTR( '1', UPLO, DIAG, N, N, A, LDA, WORK )
AINVNM = SLANTR( '1', UPLO, DIAG, N, N, AINV, LDAINV, WORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE / ANORM ) / AINVNM
*
* Set the diagonal of AINV to 1 if AINV has unit diagonal.
*
IF( LSAME( DIAG, 'U' ) ) THEN
DO 10 J = 1, N
AINV( J, J ) = ONE
10 CONTINUE
END IF
*
* Compute A * AINV, overwriting AINV.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 20 J = 1, N
CALL STRMV( 'Upper', 'No transpose', DIAG, J, A, LDA,
$ AINV( 1, J ), 1 )
20 CONTINUE
ELSE
DO 30 J = 1, N
CALL STRMV( 'Lower', 'No transpose', DIAG, N-J+1, A( J, J ),
$ LDA, AINV( J, J ), 1 )
30 CONTINUE
END IF
*
* Subtract 1 from each diagonal element to form A*AINV - I.
*
DO 40 J = 1, N
AINV( J, J ) = AINV( J, J ) - ONE
40 CONTINUE
*
* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = SLANTR( '1', UPLO, 'Non-unit', N, N, AINV, LDAINV, WORK )
*
RESID = ( ( RESID*RCOND ) / REAL( N ) ) / EPS
*
RETURN
*
* End of STRT01
*
END
|