File: zget01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (153 lines) | stat: -rw-r--r-- 4,488 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
      SUBROUTINE ZGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDAFAC, M, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZGET01 reconstructs a matrix A from its L*U factorization and
*  computes the residual
*     norm(L*U - A) / ( N * norm(A) * EPS ),
*  where EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The original M x N matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  AFAC    (input/output) COMPLEX*16 array, dimension (LDAFAC,N)
*          The factored form of the matrix A.  AFAC contains the factors
*          L and U from the L*U factorization as computed by ZGETRF.
*          Overwritten with the reconstructed matrix, and then with the
*          difference L*U - A.
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.  LDAFAC >= max(1,M).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from ZGETRF.
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (M)
*
*  RESID   (output) DOUBLE PRECISION
*          norm(L*U - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CONE
      PARAMETER          ( CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      DOUBLE PRECISION   ANORM, EPS
      COMPLEX*16         T
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      COMPLEX*16         ZDOTU
      EXTERNAL           DLAMCH, ZLANGE, ZDOTU
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMV, ZLASWP, ZSCAL, ZTRMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0.
*
      IF( M.LE.0 .OR. N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
*
*     Compute the product L*U and overwrite AFAC with the result.
*     A column at a time of the product is obtained, starting with
*     column N.
*
      DO 10 K = N, 1, -1
         IF( K.GT.M ) THEN
            CALL ZTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
     $                  LDAFAC, AFAC( 1, K ), 1 )
         ELSE
*
*           Compute elements (K+1:M,K)
*
            T = AFAC( K, K )
            IF( K+1.LE.M ) THEN
               CALL ZSCAL( M-K, T, AFAC( K+1, K ), 1 )
               CALL ZGEMV( 'No transpose', M-K, K-1, CONE,
     $                     AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1,
     $                     CONE, AFAC( K+1, K ), 1 )
            END IF
*
*           Compute the (K,K) element
*
            AFAC( K, K ) = T + ZDOTU( K-1, AFAC( K, 1 ), LDAFAC,
     $                     AFAC( 1, K ), 1 )
*
*           Compute elements (1:K-1,K)
*
            CALL ZTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
     $                  LDAFAC, AFAC( 1, K ), 1 )
         END IF
   10 CONTINUE
      CALL ZLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
*
*     Compute the difference  L*U - A  and store in AFAC.
*
      DO 30 J = 1, N
         DO 20 I = 1, M
            AFAC( I, J ) = AFAC( I, J ) - A( I, J )
   20    CONTINUE
   30 CONTINUE
*
*     Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
      RESID = ZLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZGET01
*
      END