1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
SUBROUTINE ZHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* September 30, 1994
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, LDC, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
* Purpose
* =======
*
* ZHET01 reconstructs a Hermitian indefinite matrix A from its
* block L*D*L' or U*D*U' factorization and computes the residual
* norm( C - A ) / ( N * norm(A) * EPS ),
* where C is the reconstructed matrix, EPS is the machine epsilon,
* L' is the conjugate transpose of L, and U' is the conjugate transpose
* of U.
*
* Arguments
* ==========
*
* UPLO (input) CHARACTER*1
* Specifies whether the upper or lower triangular part of the
* Hermitian matrix A is stored:
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* N (input) INTEGER
* The number of rows and columns of the matrix A. N >= 0.
*
* A (input) COMPLEX*16 array, dimension (LDA,N)
* The original Hermitian matrix A.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,N)
*
* AFAC (input) COMPLEX*16 array, dimension (LDAFAC,N)
* The factored form of the matrix A. AFAC contains the block
* diagonal matrix D and the multipliers used to obtain the
* factor L or U from the block L*D*L' or U*D*U' factorization
* as computed by ZHETRF.
*
* LDAFAC (input) INTEGER
* The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*
* IPIV (input) INTEGER array, dimension (N)
* The pivot indices from ZHETRF.
*
* C (workspace) COMPLEX*16 array, dimension (LDC,N)
*
* LDC (integer) INTEGER
* The leading dimension of the array C. LDC >= max(1,N).
*
* RWORK (workspace) DOUBLE PRECISION array, dimension (N)
*
* RESID (output) DOUBLE PRECISION
* If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
* If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
DOUBLE PRECISION ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANHE
EXTERNAL LSAME, DLAMCH, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZLASET, ZLAVHE
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DIMAG
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
*
* Check the imaginary parts of the diagonal elements and return with
* an error code if any are nonzero.
*
DO 10 J = 1, N
IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
10 CONTINUE
*
* Initialize C to the identity matrix.
*
CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
* Call ZLAVHE to form the product D * U' (or D * L' ).
*
CALL ZLAVHE( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Call ZLAVHE again to multiply by U (or L ).
*
CALL ZLAVHE( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 30 J = 1, N
DO 20 I = 1, J - 1
C( I, J ) = C( I, J ) - A( I, J )
20 CONTINUE
C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
30 CONTINUE
ELSE
DO 50 J = 1, N
C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
DO 40 I = J + 1, N
C( I, J ) = C( I, J ) - A( I, J )
40 CONTINUE
50 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of ZHET01
*
END
|