File: zhet01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (166 lines) | stat: -rw-r--r-- 4,989 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
      SUBROUTINE ZHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
     $                   RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, LDC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZHET01 reconstructs a Hermitian indefinite matrix A from its
*  block L*D*L' or U*D*U' factorization and computes the residual
*     norm( C - A ) / ( N * norm(A) * EPS ),
*  where C is the reconstructed matrix, EPS is the machine epsilon,
*  L' is the conjugate transpose of L, and U' is the conjugate transpose
*  of U.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The number of rows and columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (LDA,N)
*          The original Hermitian matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,N)
*
*  AFAC    (input) COMPLEX*16 array, dimension (LDAFAC,N)
*          The factored form of the matrix A.  AFAC contains the block
*          diagonal matrix D and the multipliers used to obtain the
*          factor L or U from the block L*D*L' or U*D*U' factorization
*          as computed by ZHETRF.
*
*  LDAFAC  (input) INTEGER
*          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from ZHETRF.
*
*  C       (workspace) COMPLEX*16 array, dimension (LDC,N)
*
*  LDC     (integer) INTEGER
*          The leading dimension of the array C.  LDC >= max(1,N).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESID   (output) DOUBLE PRECISION
*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANHE
      EXTERNAL           LSAME, DLAMCH, ZLANHE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASET, ZLAVHE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DIMAG
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
*
*     Check the imaginary parts of the diagonal elements and return with
*     an error code if any are nonzero.
*
      DO 10 J = 1, N
         IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
            RESID = ONE / EPS
            RETURN
         END IF
   10 CONTINUE
*
*     Initialize C to the identity matrix.
*
      CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call ZLAVHE to form the product D * U' (or D * L' ).
*
      CALL ZLAVHE( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, LDAFAC,
     $             IPIV, C, LDC, INFO )
*
*     Call ZLAVHE again to multiply by U (or L ).
*
      CALL ZLAVHE( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
     $             IPIV, C, LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 30 J = 1, N
            DO 20 I = 1, J - 1
               C( I, J ) = C( I, J ) - A( I, J )
   20       CONTINUE
            C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
   30    CONTINUE
      ELSE
         DO 50 J = 1, N
            C( J, J ) = C( J, J ) - DBLE( A( J, J ) )
            DO 40 I = J + 1, N
               C( I, J ) = C( I, J ) - A( I, J )
   40       CONTINUE
   50    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZHET01
*
      END