File: zspt01.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (151 lines) | stat: -rw-r--r-- 4,443 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
      SUBROUTINE ZSPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
*  -- LAPACK test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( * ), AFAC( * ), C( LDC, * )
*     ..
*
*  Purpose
*  =======
*
*  ZSPT01 reconstructs a symmetric indefinite packed matrix A from its
*  diagonal pivoting factorization A = U*D*U' or A = L*D*L' and computes
*  the residual
*     norm( C - A ) / ( N * norm(A) * EPS ),
*  where C is the reconstructed matrix and EPS is the machine epsilon.
*
*  Arguments
*  ==========
*
*  UPLO    (input) CHARACTER*1
*          Specifies whether the upper or lower triangular part of the
*          Hermitian matrix A is stored:
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The order of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX*16 array, dimension (N*(N+1)/2)
*          The original symmetric matrix A, stored as a packed
*          triangular matrix.
*
*  AFAC    (input) COMPLEX*16 array, dimension (N*(N+1)/2)
*          The factored form of the matrix A, stored as a packed
*          triangular matrix.  AFAC contains the block diagonal matrix D
*          and the multipliers used to obtain the factor L or U from the
*          L*D*L' or U*D*U' factorization as computed by ZSPTRF.
*
*  IPIV    (input) INTEGER array, dimension (N)
*          The pivot indices from ZSPTRF.
*
*  C       (workspace) COMPLEX*16 array, dimension (LDC,N)
*
*  LDC     (integer) INTEGER
*          The leading dimension of the array C.  LDC >= max(1,N).
*
*  RWORK   (workspace) DOUBLE PRECISION array, dimension (N)
*
*  RESID   (output) DOUBLE PRECISION
*          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J, JC
      DOUBLE PRECISION   ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANSP, ZLANSY
      EXTERNAL           LSAME, DLAMCH, ZLANSP, ZLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASET, ZLAVSP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANSP( '1', UPLO, N, A, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call ZLAVSP to form the product D * U' (or D * L' ).
*
      CALL ZLAVSP( UPLO, 'Transpose', 'Non-unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Call ZLAVSP again to multiply by U ( or L ).
*
      CALL ZLAVSP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
     $             LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         JC = 0
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( JC+I )
   10       CONTINUE
            JC = JC + J
   20    CONTINUE
      ELSE
         JC = 1
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( JC+I-J )
   30       CONTINUE
            JC = JC + N - J + 1
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = ZLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZSPT01
*
      END