File: dlaror.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (239 lines) | stat: -rw-r--r-- 7,758 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
      SUBROUTINE DLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
*
*  -- LAPACK auxiliary test routine (version 3.0) --
*     Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
*     Courant Institute, Argonne National Lab, and Rice University
*     September 30, 1994
*
*     .. Scalar Arguments ..
      CHARACTER          INIT, SIDE
      INTEGER            INFO, LDA, M, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( 4 )
      DOUBLE PRECISION   A( LDA, * ), X( * )
*     ..
*
*  Purpose
*  =======
*
*  DLAROR pre- or post-multiplies an M by N matrix A by a random
*  orthogonal matrix U, overwriting A.  A may optionally be initialized
*  to the identity matrix before multiplying by U.  U is generated using
*  the method of G.W. Stewart (SIAM J. Numer. Anal. 17, 1980, 403-409).
*
*  Arguments
*  =========
*
*  SIDE    (input) CHARACTER*1
*          Specifies whether A is multiplied on the left or right by U.
*          = 'L':         Multiply A on the left (premultiply) by U
*          = 'R':         Multiply A on the right (postmultiply) by U'
*          = 'C' or 'T':  Multiply A on the left by U and the right
*                          by U' (Here, U' means U-transpose.)
*
*  INIT    (input) CHARACTER*1
*          Specifies whether or not A should be initialized to the
*          identity matrix.
*          = 'I':  Initialize A to (a section of) the identity matrix
*                   before applying U.
*          = 'N':  No initialization.  Apply U to the input matrix A.
*
*          INIT = 'I' may be used to generate square or rectangular
*          orthogonal matrices:
*
*          For M = N and SIDE = 'L' or 'R', the rows will be orthogonal
*          to each other, as will the columns.
*
*          If M < N, SIDE = 'R' produces a dense matrix whose rows are
*          orthogonal and whose columns are not, while SIDE = 'L'
*          produces a matrix whose rows are orthogonal, and whose first
*          M columns are orthogonal, and whose remaining columns are
*          zero.
*
*          If M > N, SIDE = 'L' produces a dense matrix whose columns
*          are orthogonal and whose rows are not, while SIDE = 'R'
*          produces a matrix whose columns are orthogonal, and whose
*          first M rows are orthogonal, and whose remaining rows are
*          zero.
*
*  M       (input) INTEGER
*          The number of rows of A.
*
*  N       (input) INTEGER
*          The number of columns of A.
*
*  A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)
*          On entry, the array A.
*          On exit, overwritten by U A ( if SIDE = 'L' ),
*           or by A U ( if SIDE = 'R' ),
*           or by U A U' ( if SIDE = 'C' or 'T').
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  ISEED   (input/output) INTEGER array, dimension (4)
*          On entry ISEED specifies the seed of the random number
*          generator. The array elements should be between 0 and 4095;
*          if not they will be reduced mod 4096.  Also, ISEED(4) must
*          be odd.  The random number generator uses a linear
*          congruential sequence limited to small integers, and so
*          should produce machine independent random numbers. The
*          values of ISEED are changed on exit, and can be used in the
*          next call to DLAROR to continue the same random number
*          sequence.
*
*  X       (workspace) DOUBLE PRECISION array, dimension (3*MAX( M, N ))
*          Workspace of length
*              2*M + N if SIDE = 'L',
*              2*N + M if SIDE = 'R',
*              3*N     if SIDE = 'C' or 'T'.
*
*  INFO    (output) INTEGER
*          An error flag.  It is set to:
*          = 0:  normal return
*          < 0:  if INFO = -k, the k-th argument had an illegal value
*          = 1:  if the random numbers generated by DLARND are bad.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, TOOSML
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0,
     $                   TOOSML = 1.0D-20 )
*     ..
*     .. Local Scalars ..
      INTEGER            IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
      DOUBLE PRECISION   FACTOR, XNORM, XNORMS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLARND, DNRM2
      EXTERNAL           LSAME, DLARND, DNRM2
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMV, DGER, DLASET, DSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SIGN
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 .OR. M.EQ.0 )
     $   RETURN
*
      ITYPE = 0
      IF( LSAME( SIDE, 'L' ) ) THEN
         ITYPE = 1
      ELSE IF( LSAME( SIDE, 'R' ) ) THEN
         ITYPE = 2
      ELSE IF( LSAME( SIDE, 'C' ) .OR. LSAME( SIDE, 'T' ) ) THEN
         ITYPE = 3
      END IF
*
*     Check for argument errors.
*
      INFO = 0
      IF( ITYPE.EQ.0 ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -3
      ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
         INFO = -4
      ELSE IF( LDA.LT.M ) THEN
         INFO = -6
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'DLAROR', -INFO )
         RETURN
      END IF
*
      IF( ITYPE.EQ.1 ) THEN
         NXFRM = M
      ELSE
         NXFRM = N
      END IF
*
*     Initialize A to the identity matrix if desired
*
      IF( LSAME( INIT, 'I' ) )
     $   CALL DLASET( 'Full', M, N, ZERO, ONE, A, LDA )
*
*     If no rotation possible, multiply by random +/-1
*
*     Compute rotation by computing Householder transformations
*     H(2), H(3), ..., H(nhouse)
*
      DO 10 J = 1, NXFRM
         X( J ) = ZERO
   10 CONTINUE
*
      DO 30 IXFRM = 2, NXFRM
         KBEG = NXFRM - IXFRM + 1
*
*        Generate independent normal( 0, 1 ) random numbers
*
         DO 20 J = KBEG, NXFRM
            X( J ) = DLARND( 3, ISEED )
   20    CONTINUE
*
*        Generate a Householder transformation from the random vector X
*
         XNORM = DNRM2( IXFRM, X( KBEG ), 1 )
         XNORMS = SIGN( XNORM, X( KBEG ) )
         X( KBEG+NXFRM ) = SIGN( ONE, -X( KBEG ) )
         FACTOR = XNORMS*( XNORMS+X( KBEG ) )
         IF( ABS( FACTOR ).LT.TOOSML ) THEN
            INFO = 1
            CALL XERBLA( 'DLAROR', INFO )
            RETURN
         ELSE
            FACTOR = ONE / FACTOR
         END IF
         X( KBEG ) = X( KBEG ) + XNORMS
*
*        Apply Householder transformation to A
*
         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 ) THEN
*
*           Apply H(k) from the left.
*
            CALL DGEMV( 'T', IXFRM, N, ONE, A( KBEG, 1 ), LDA,
     $                  X( KBEG ), 1, ZERO, X( 2*NXFRM+1 ), 1 )
            CALL DGER( IXFRM, N, -FACTOR, X( KBEG ), 1, X( 2*NXFRM+1 ),
     $                 1, A( KBEG, 1 ), LDA )
*
         END IF
*
         IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
*
*           Apply H(k) from the right.
*
            CALL DGEMV( 'N', M, IXFRM, ONE, A( 1, KBEG ), LDA,
     $                  X( KBEG ), 1, ZERO, X( 2*NXFRM+1 ), 1 )
            CALL DGER( M, IXFRM, -FACTOR, X( 2*NXFRM+1 ), 1, X( KBEG ),
     $                 1, A( 1, KBEG ), LDA )
*
         END IF
   30 CONTINUE
*
      X( 2*NXFRM ) = SIGN( ONE, DLARND( 3, ISEED ) )
*
*     Scale the matrix A by D.
*
      IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 ) THEN
         DO 40 IROW = 1, M
            CALL DSCAL( N, X( NXFRM+IROW ), A( IROW, 1 ), LDA )
   40    CONTINUE
      END IF
*
      IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
         DO 50 JCOL = 1, N
            CALL DSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
   50    CONTINUE
      END IF
      RETURN
*
*     End of DLAROR
*
      END