File: clinpk.f

package info (click to toggle)
lapack 3.0.20000531a-28
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 61,920 kB
  • ctags: 46,200
  • sloc: fortran: 584,835; perl: 8,226; makefile: 2,331; awk: 71; sh: 45
file content (391 lines) | stat: -rw-r--r-- 10,791 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
      SUBROUTINE CGEFA(A,LDA,N,IPVT,INFO)
      INTEGER LDA,N,IPVT(*),INFO
      COMPLEX A(LDA,*)
C
C     CGEFA FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION.
C
C     CGEFA IS USUALLY CALLED BY CGECO, BUT IT CAN BE CALLED
C     DIRECTLY WITH A SAVING IN TIME IF  RCOND  IS NOT NEEDED.
C     (TIME FOR CGECO) = (1 + 9/N)*(TIME FOR CGEFA) .
C
C     ON ENTRY
C
C        A       COMPLEX(LDA, N)
C                THE MATRIX TO BE FACTORED.
C
C        LDA     INTEGER
C                THE LEADING DIMENSION OF THE ARRAY  A .
C
C        N       INTEGER
C                THE ORDER OF THE MATRIX  A .
C
C     ON RETURN
C
C        A       AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
C                WHICH WERE USED TO OBTAIN IT.
C                THE FACTORIZATION CAN BE WRITTEN  A = L*U  WHERE
C                L  IS A PRODUCT OF PERMUTATION AND UNIT LOWER
C                TRIANGULAR MATRICES AND  U  IS UPPER TRIANGULAR.
C
C        IPVT    INTEGER(N)
C                AN INTEGER VECTOR OF PIVOT INDICES.
C
C        INFO    INTEGER
C                = 0  NORMAL VALUE.
C                = K  IF  U(K,K) .EQ. 0.0 .  THIS IS NOT AN ERROR
C                     CONDITION FOR THIS SUBROUTINE, BUT IT DOES
C                     INDICATE THAT CGESL OR CGEDI WILL DIVIDE BY ZERO
C                     IF CALLED.  USE  RCOND  IN CGECO FOR A RELIABLE
C                     INDICATION OF SINGULARITY.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C     SUBROUTINES AND FUNCTIONS
C
C     BLAS CAXPY,CSCAL,ICAMAX
C     FORTRAN ABS,AIMAG,REAL
C
C     INTERNAL VARIABLES
C
      COMPLEX T
      INTEGER ICAMAX,J,K,KP1,L,NM1
C
      COMPLEX ZDUM
      REAL CABS1
      CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C
C     GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C
      INFO = 0
      NM1 = N - 1
      IF (NM1 .LT. 1) GO TO 70
      DO 60 K = 1, NM1
         KP1 = K + 1
C
C        FIND L = PIVOT INDEX
C
         L = ICAMAX(N-K+1,A(K,K),1) + K - 1
         IPVT(K) = L
C
C        ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C
         IF (CABS1(A(L,K)) .EQ. 0.0E0) GO TO 40
C
C           INTERCHANGE IF NECESSARY
C
            IF (L .EQ. K) GO TO 10
               T = A(L,K)
               A(L,K) = A(K,K)
               A(K,K) = T
   10       CONTINUE
C
C           COMPUTE MULTIPLIERS
C
            T = -(1.0E0,0.0E0)/A(K,K)
            CALL CSCAL(N-K,T,A(K+1,K),1)
C
C           ROW ELIMINATION WITH COLUMN INDEXING
C
            DO 30 J = KP1, N
               T = A(L,J)
               IF (L .EQ. K) GO TO 20
                  A(L,J) = A(K,J)
                  A(K,J) = T
   20          CONTINUE
               CALL CAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
   30       CONTINUE
         GO TO 50
   40    CONTINUE
            INFO = K
   50    CONTINUE
   60 CONTINUE
   70 CONTINUE
      IPVT(N) = N
      IF (CABS1(A(N,N)) .EQ. 0.0E0) INFO = N
      RETURN
      END
      SUBROUTINE CPOFA(A,LDA,N,INFO)
      INTEGER LDA,N,INFO
      COMPLEX A(LDA,*)
C
C     CPOFA FACTORS A COMPLEX HERMITIAN POSITIVE DEFINITE MATRIX.
C
C     CPOFA IS USUALLY CALLED BY CPOCO, BUT IT CAN BE CALLED
C     DIRECTLY WITH A SAVING IN TIME IF  RCOND  IS NOT NEEDED.
C     (TIME FOR CPOCO) = (1 + 18/N)*(TIME FOR CPOFA) .
C
C     ON ENTRY
C
C        A       COMPLEX(LDA, N)
C                THE HERMITIAN MATRIX TO BE FACTORED.  ONLY THE
C                DIAGONAL AND UPPER TRIANGLE ARE USED.
C
C        LDA     INTEGER
C                THE LEADING DIMENSION OF THE ARRAY  A .
C
C        N       INTEGER
C                THE ORDER OF THE MATRIX  A .
C
C     ON RETURN
C
C        A       AN UPPER TRIANGULAR MATRIX  R  SO THAT  A =
C                CTRANS(R)*R WHERE  CTRANS(R)  IS THE CONJUGATE
C                TRANSPOSE.  THE STRICT LOWER TRIANGLE IS UNALTERED.
C                IF  INFO .NE. 0 , THE FACTORIZATION IS NOT COMPLETE.
C
C        INFO    INTEGER
C                = 0  FOR NORMAL RETURN.
C                = K  SIGNALS AN ERROR CONDITION.  THE LEADING MINOR
C                     OF ORDER  K  IS NOT POSITIVE DEFINITE.
C
C     LINPACK.  THIS VERSION DATED 08/14/78 .
C     CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C     SUBROUTINES AND FUNCTIONS
C
C     BLAS CDOTC
C     FORTRAN AIMAG,CMPLX,CONJG,REAL,SQRT
C
C     INTERNAL VARIABLES
C
      COMPLEX CDOTC,T
      REAL S
      INTEGER J,JM1,K
C     BEGIN BLOCK WITH ...EXITS TO 40
C
C
         DO 30 J = 1, N
            INFO = J
            S = 0.0E0
            JM1 = J - 1
            IF (JM1 .LT. 1) GO TO 20
            DO 10 K = 1, JM1
               T = A(K,J) - CDOTC(K-1,A(1,K),1,A(1,J),1)
               T = T/A(K,K)
               A(K,J) = T
               S = S + REAL(T*CONJG(T))
   10       CONTINUE
   20       CONTINUE
            S = REAL(A(J,J)) - S
C     ......EXIT
            IF (S .LE. 0.0E0 .OR. AIMAG(A(J,J)) .NE. 0.0E0) GO TO 40
            A(J,J) = CMPLX(SQRT(S),0.0E0)
   30    CONTINUE
         INFO = 0
   40 CONTINUE
      RETURN
      END
      SUBROUTINE CGTSL(N,C,D,E,B,INFO)
      INTEGER N,INFO
      COMPLEX C(*),D(*),E(*),B(*)
C
C     CGTSL GIVEN A GENERAL TRIDIAGONAL MATRIX AND A RIGHT HAND
C     SIDE WILL FIND THE SOLUTION.
C
C     ON ENTRY
C
C        N       INTEGER
C                IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C        C       COMPLEX(N)
C                IS THE SUBDIAGONAL OF THE TRIDIAGONAL MATRIX.
C                C(2) THROUGH C(N) SHOULD CONTAIN THE SUBDIAGONAL.
C                ON OUTPUT C IS DESTROYED.
C
C        D       COMPLEX(N)
C                IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C                ON OUTPUT D IS DESTROYED.
C
C        E       COMPLEX(N)
C                IS THE SUPERDIAGONAL OF THE TRIDIAGONAL MATRIX.
C                E(1) THROUGH E(N-1) SHOULD CONTAIN THE SUPERDIAGONAL.
C                ON OUTPUT E IS DESTROYED.
C
C        B       COMPLEX(N)
C                IS THE RIGHT HAND SIDE VECTOR.
C
C     ON RETURN
C
C        B       IS THE SOLUTION VECTOR.
C
C        INFO    INTEGER
C                = 0 NORMAL VALUE.
C                = K IF THE K-TH ELEMENT OF THE DIAGONAL BECOMES
C                    EXACTLY ZERO.  THE SUBROUTINE RETURNS WHEN
C                    THIS IS DETECTED.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C     NO EXTERNALS
C     FORTRAN ABS,AIMAG,REAL
C
C     INTERNAL VARIABLES
C
      INTEGER K,KB,KP1,NM1,NM2
      COMPLEX T
      COMPLEX ZDUM
      REAL CABS1
      CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C     BEGIN BLOCK PERMITTING ...EXITS TO 100
C
         INFO = 0
         C(1) = D(1)
         NM1 = N - 1
         IF (NM1 .LT. 1) GO TO 40
            D(1) = E(1)
            E(1) = (0.0E0,0.0E0)
            E(N) = (0.0E0,0.0E0)
C
            DO 30 K = 1, NM1
               KP1 = K + 1
C
C              FIND THE LARGEST OF THE TWO ROWS
C
               IF (CABS1(C(KP1)) .LT. CABS1(C(K))) GO TO 10
C
C                 INTERCHANGE ROW
C
                  T = C(KP1)
                  C(KP1) = C(K)
                  C(K) = T
                  T = D(KP1)
                  D(KP1) = D(K)
                  D(K) = T
                  T = E(KP1)
                  E(KP1) = E(K)
                  E(K) = T
                  T = B(KP1)
                  B(KP1) = B(K)
                  B(K) = T
   10          CONTINUE
C
C              ZERO ELEMENTS
C
               IF (CABS1(C(K)) .NE. 0.0E0) GO TO 20
                  INFO = K
C     ............EXIT
                  GO TO 100
   20          CONTINUE
               T = -C(KP1)/C(K)
               C(KP1) = D(KP1) + T*D(K)
               D(KP1) = E(KP1) + T*E(K)
               E(KP1) = (0.0E0,0.0E0)
               B(KP1) = B(KP1) + T*B(K)
   30       CONTINUE
   40    CONTINUE
         IF (CABS1(C(N)) .NE. 0.0E0) GO TO 50
            INFO = N
         GO TO 90
   50    CONTINUE
C
C           BACK SOLVE
C
            NM2 = N - 2
            B(N) = B(N)/C(N)
            IF (N .EQ. 1) GO TO 80
               B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
               IF (NM2 .LT. 1) GO TO 70
               DO 60 KB = 1, NM2
                  K = NM2 - KB + 1
                  B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
   60          CONTINUE
   70          CONTINUE
   80       CONTINUE
   90    CONTINUE
  100 CONTINUE
C
      RETURN
      END
      SUBROUTINE CPTSL(N,D,E,B)
      INTEGER N
      COMPLEX D(*),E(*),B(*)
C
C     CPTSL GIVEN A POSITIVE DEFINITE TRIDIAGONAL MATRIX AND A RIGHT
C     HAND SIDE WILL FIND THE SOLUTION.
C
C     ON ENTRY
C
C        N        INTEGER
C                 IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C        D        COMPLEX(N)
C                 IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C                 ON OUTPUT D IS DESTROYED.
C
C        E        COMPLEX(N)
C                 IS THE OFFDIAGONAL OF THE TRIDIAGONAL MATRIX.
C                 E(1) THROUGH E(N-1) SHOULD CONTAIN THE
C                 OFFDIAGONAL.
C
C        B        COMPLEX(N)
C                 IS THE RIGHT HAND SIDE VECTOR.
C
C     ON RETURN
C
C        B        CONTAINS THE SOULTION.
C
C     LINPACK. THIS VERSION DATED 08/14/78 .
C     JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C     NO EXTERNALS
C     FORTRAN CONJG,MOD
C
C     INTERNAL VARIABLES
C
      INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
      COMPLEX T1,T2
C
C     CHECK FOR 1 X 1 CASE
C
      IF (N .NE. 1) GO TO 10
         B(1) = B(1)/D(1)
      GO TO 70
   10 CONTINUE
         NM1 = N - 1
         NM1D2 = NM1/2
         IF (N .EQ. 2) GO TO 30
            KBM1 = N - 1
C
C           ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
C           SUPERDIAGONAL
C
            DO 20 K = 1, NM1D2
               T1 = CONJG(E(K))/D(K)
               D(K+1) = D(K+1) - T1*E(K)
               B(K+1) = B(K+1) - T1*B(K)
               T2 = E(KBM1)/D(KBM1+1)
               D(KBM1) = D(KBM1) - T2*CONJG(E(KBM1))
               B(KBM1) = B(KBM1) - T2*B(KBM1+1)
               KBM1 = KBM1 - 1
   20       CONTINUE
   30    CONTINUE
         KP1 = NM1D2 + 1
C
C        CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
C
         IF (MOD(N,2) .NE. 0) GO TO 40
            T1 = CONJG(E(KP1))/D(KP1)
            D(KP1+1) = D(KP1+1) - T1*E(KP1)
            B(KP1+1) = B(KP1+1) - T1*B(KP1)
            KP1 = KP1 + 1
   40    CONTINUE
C
C        BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
C        AND BOTTOM
C
         B(KP1) = B(KP1)/D(KP1)
         IF (N .EQ. 2) GO TO 60
            K = KP1 - 1
            KE = KP1 + NM1D2 - 1
            DO 50 KF = KP1, KE
               B(K) = (B(K) - E(K)*B(K+1))/D(K)
               B(KF+1) = (B(KF+1) - CONJG(E(KF))*B(KF))/D(KF+1)
               K = K - 1
   50       CONTINUE
   60    CONTINUE
         IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
   70 CONTINUE
      RETURN
      END