1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
SUBROUTINE CGEFA(A,LDA,N,IPVT,INFO)
INTEGER LDA,N,IPVT(*),INFO
COMPLEX A(LDA,*)
C
C CGEFA FACTORS A COMPLEX MATRIX BY GAUSSIAN ELIMINATION.
C
C CGEFA IS USUALLY CALLED BY CGECO, BUT IT CAN BE CALLED
C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
C (TIME FOR CGECO) = (1 + 9/N)*(TIME FOR CGEFA) .
C
C ON ENTRY
C
C A COMPLEX(LDA, N)
C THE MATRIX TO BE FACTORED.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C ON RETURN
C
C A AN UPPER TRIANGULAR MATRIX AND THE MULTIPLIERS
C WHICH WERE USED TO OBTAIN IT.
C THE FACTORIZATION CAN BE WRITTEN A = L*U WHERE
C L IS A PRODUCT OF PERMUTATION AND UNIT LOWER
C TRIANGULAR MATRICES AND U IS UPPER TRIANGULAR.
C
C IPVT INTEGER(N)
C AN INTEGER VECTOR OF PIVOT INDICES.
C
C INFO INTEGER
C = 0 NORMAL VALUE.
C = K IF U(K,K) .EQ. 0.0 . THIS IS NOT AN ERROR
C CONDITION FOR THIS SUBROUTINE, BUT IT DOES
C INDICATE THAT CGESL OR CGEDI WILL DIVIDE BY ZERO
C IF CALLED. USE RCOND IN CGECO FOR A RELIABLE
C INDICATION OF SINGULARITY.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS CAXPY,CSCAL,ICAMAX
C FORTRAN ABS,AIMAG,REAL
C
C INTERNAL VARIABLES
C
COMPLEX T
INTEGER ICAMAX,J,K,KP1,L,NM1
C
COMPLEX ZDUM
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C
C GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
C
INFO = 0
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 70
DO 60 K = 1, NM1
KP1 = K + 1
C
C FIND L = PIVOT INDEX
C
L = ICAMAX(N-K+1,A(K,K),1) + K - 1
IPVT(K) = L
C
C ZERO PIVOT IMPLIES THIS COLUMN ALREADY TRIANGULARIZED
C
IF (CABS1(A(L,K)) .EQ. 0.0E0) GO TO 40
C
C INTERCHANGE IF NECESSARY
C
IF (L .EQ. K) GO TO 10
T = A(L,K)
A(L,K) = A(K,K)
A(K,K) = T
10 CONTINUE
C
C COMPUTE MULTIPLIERS
C
T = -(1.0E0,0.0E0)/A(K,K)
CALL CSCAL(N-K,T,A(K+1,K),1)
C
C ROW ELIMINATION WITH COLUMN INDEXING
C
DO 30 J = KP1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20
A(L,J) = A(K,J)
A(K,J) = T
20 CONTINUE
CALL CAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
30 CONTINUE
GO TO 50
40 CONTINUE
INFO = K
50 CONTINUE
60 CONTINUE
70 CONTINUE
IPVT(N) = N
IF (CABS1(A(N,N)) .EQ. 0.0E0) INFO = N
RETURN
END
SUBROUTINE CPOFA(A,LDA,N,INFO)
INTEGER LDA,N,INFO
COMPLEX A(LDA,*)
C
C CPOFA FACTORS A COMPLEX HERMITIAN POSITIVE DEFINITE MATRIX.
C
C CPOFA IS USUALLY CALLED BY CPOCO, BUT IT CAN BE CALLED
C DIRECTLY WITH A SAVING IN TIME IF RCOND IS NOT NEEDED.
C (TIME FOR CPOCO) = (1 + 18/N)*(TIME FOR CPOFA) .
C
C ON ENTRY
C
C A COMPLEX(LDA, N)
C THE HERMITIAN MATRIX TO BE FACTORED. ONLY THE
C DIAGONAL AND UPPER TRIANGLE ARE USED.
C
C LDA INTEGER
C THE LEADING DIMENSION OF THE ARRAY A .
C
C N INTEGER
C THE ORDER OF THE MATRIX A .
C
C ON RETURN
C
C A AN UPPER TRIANGULAR MATRIX R SO THAT A =
C CTRANS(R)*R WHERE CTRANS(R) IS THE CONJUGATE
C TRANSPOSE. THE STRICT LOWER TRIANGLE IS UNALTERED.
C IF INFO .NE. 0 , THE FACTORIZATION IS NOT COMPLETE.
C
C INFO INTEGER
C = 0 FOR NORMAL RETURN.
C = K SIGNALS AN ERROR CONDITION. THE LEADING MINOR
C OF ORDER K IS NOT POSITIVE DEFINITE.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C CLEVE MOLER, UNIVERSITY OF NEW MEXICO, ARGONNE NATIONAL LAB.
C
C SUBROUTINES AND FUNCTIONS
C
C BLAS CDOTC
C FORTRAN AIMAG,CMPLX,CONJG,REAL,SQRT
C
C INTERNAL VARIABLES
C
COMPLEX CDOTC,T
REAL S
INTEGER J,JM1,K
C BEGIN BLOCK WITH ...EXITS TO 40
C
C
DO 30 J = 1, N
INFO = J
S = 0.0E0
JM1 = J - 1
IF (JM1 .LT. 1) GO TO 20
DO 10 K = 1, JM1
T = A(K,J) - CDOTC(K-1,A(1,K),1,A(1,J),1)
T = T/A(K,K)
A(K,J) = T
S = S + REAL(T*CONJG(T))
10 CONTINUE
20 CONTINUE
S = REAL(A(J,J)) - S
C ......EXIT
IF (S .LE. 0.0E0 .OR. AIMAG(A(J,J)) .NE. 0.0E0) GO TO 40
A(J,J) = CMPLX(SQRT(S),0.0E0)
30 CONTINUE
INFO = 0
40 CONTINUE
RETURN
END
SUBROUTINE CGTSL(N,C,D,E,B,INFO)
INTEGER N,INFO
COMPLEX C(*),D(*),E(*),B(*)
C
C CGTSL GIVEN A GENERAL TRIDIAGONAL MATRIX AND A RIGHT HAND
C SIDE WILL FIND THE SOLUTION.
C
C ON ENTRY
C
C N INTEGER
C IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C C COMPLEX(N)
C IS THE SUBDIAGONAL OF THE TRIDIAGONAL MATRIX.
C C(2) THROUGH C(N) SHOULD CONTAIN THE SUBDIAGONAL.
C ON OUTPUT C IS DESTROYED.
C
C D COMPLEX(N)
C IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C ON OUTPUT D IS DESTROYED.
C
C E COMPLEX(N)
C IS THE SUPERDIAGONAL OF THE TRIDIAGONAL MATRIX.
C E(1) THROUGH E(N-1) SHOULD CONTAIN THE SUPERDIAGONAL.
C ON OUTPUT E IS DESTROYED.
C
C B COMPLEX(N)
C IS THE RIGHT HAND SIDE VECTOR.
C
C ON RETURN
C
C B IS THE SOLUTION VECTOR.
C
C INFO INTEGER
C = 0 NORMAL VALUE.
C = K IF THE K-TH ELEMENT OF THE DIAGONAL BECOMES
C EXACTLY ZERO. THE SUBROUTINE RETURNS WHEN
C THIS IS DETECTED.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C NO EXTERNALS
C FORTRAN ABS,AIMAG,REAL
C
C INTERNAL VARIABLES
C
INTEGER K,KB,KP1,NM1,NM2
COMPLEX T
COMPLEX ZDUM
REAL CABS1
CABS1(ZDUM) = ABS(REAL(ZDUM)) + ABS(AIMAG(ZDUM))
C BEGIN BLOCK PERMITTING ...EXITS TO 100
C
INFO = 0
C(1) = D(1)
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 40
D(1) = E(1)
E(1) = (0.0E0,0.0E0)
E(N) = (0.0E0,0.0E0)
C
DO 30 K = 1, NM1
KP1 = K + 1
C
C FIND THE LARGEST OF THE TWO ROWS
C
IF (CABS1(C(KP1)) .LT. CABS1(C(K))) GO TO 10
C
C INTERCHANGE ROW
C
T = C(KP1)
C(KP1) = C(K)
C(K) = T
T = D(KP1)
D(KP1) = D(K)
D(K) = T
T = E(KP1)
E(KP1) = E(K)
E(K) = T
T = B(KP1)
B(KP1) = B(K)
B(K) = T
10 CONTINUE
C
C ZERO ELEMENTS
C
IF (CABS1(C(K)) .NE. 0.0E0) GO TO 20
INFO = K
C ............EXIT
GO TO 100
20 CONTINUE
T = -C(KP1)/C(K)
C(KP1) = D(KP1) + T*D(K)
D(KP1) = E(KP1) + T*E(K)
E(KP1) = (0.0E0,0.0E0)
B(KP1) = B(KP1) + T*B(K)
30 CONTINUE
40 CONTINUE
IF (CABS1(C(N)) .NE. 0.0E0) GO TO 50
INFO = N
GO TO 90
50 CONTINUE
C
C BACK SOLVE
C
NM2 = N - 2
B(N) = B(N)/C(N)
IF (N .EQ. 1) GO TO 80
B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
IF (NM2 .LT. 1) GO TO 70
DO 60 KB = 1, NM2
K = NM2 - KB + 1
B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)
60 CONTINUE
70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE
C
RETURN
END
SUBROUTINE CPTSL(N,D,E,B)
INTEGER N
COMPLEX D(*),E(*),B(*)
C
C CPTSL GIVEN A POSITIVE DEFINITE TRIDIAGONAL MATRIX AND A RIGHT
C HAND SIDE WILL FIND THE SOLUTION.
C
C ON ENTRY
C
C N INTEGER
C IS THE ORDER OF THE TRIDIAGONAL MATRIX.
C
C D COMPLEX(N)
C IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX.
C ON OUTPUT D IS DESTROYED.
C
C E COMPLEX(N)
C IS THE OFFDIAGONAL OF THE TRIDIAGONAL MATRIX.
C E(1) THROUGH E(N-1) SHOULD CONTAIN THE
C OFFDIAGONAL.
C
C B COMPLEX(N)
C IS THE RIGHT HAND SIDE VECTOR.
C
C ON RETURN
C
C B CONTAINS THE SOULTION.
C
C LINPACK. THIS VERSION DATED 08/14/78 .
C JACK DONGARRA, ARGONNE NATIONAL LABORATORY.
C
C NO EXTERNALS
C FORTRAN CONJG,MOD
C
C INTERNAL VARIABLES
C
INTEGER K,KBM1,KE,KF,KP1,NM1,NM1D2
COMPLEX T1,T2
C
C CHECK FOR 1 X 1 CASE
C
IF (N .NE. 1) GO TO 10
B(1) = B(1)/D(1)
GO TO 70
10 CONTINUE
NM1 = N - 1
NM1D2 = NM1/2
IF (N .EQ. 2) GO TO 30
KBM1 = N - 1
C
C ZERO TOP HALF OF SUBDIAGONAL AND BOTTOM HALF OF
C SUPERDIAGONAL
C
DO 20 K = 1, NM1D2
T1 = CONJG(E(K))/D(K)
D(K+1) = D(K+1) - T1*E(K)
B(K+1) = B(K+1) - T1*B(K)
T2 = E(KBM1)/D(KBM1+1)
D(KBM1) = D(KBM1) - T2*CONJG(E(KBM1))
B(KBM1) = B(KBM1) - T2*B(KBM1+1)
KBM1 = KBM1 - 1
20 CONTINUE
30 CONTINUE
KP1 = NM1D2 + 1
C
C CLEAN UP FOR POSSIBLE 2 X 2 BLOCK AT CENTER
C
IF (MOD(N,2) .NE. 0) GO TO 40
T1 = CONJG(E(KP1))/D(KP1)
D(KP1+1) = D(KP1+1) - T1*E(KP1)
B(KP1+1) = B(KP1+1) - T1*B(KP1)
KP1 = KP1 + 1
40 CONTINUE
C
C BACK SOLVE STARTING AT THE CENTER, GOING TOWARDS THE TOP
C AND BOTTOM
C
B(KP1) = B(KP1)/D(KP1)
IF (N .EQ. 2) GO TO 60
K = KP1 - 1
KE = KP1 + NM1D2 - 1
DO 50 KF = KP1, KE
B(K) = (B(K) - E(K)*B(K+1))/D(K)
B(KF+1) = (B(KF+1) - CONJG(E(KF))*B(KF))/D(KF+1)
K = K - 1
50 CONTINUE
60 CONTINUE
IF (MOD(N,2) .EQ. 0) B(1) = (B(1) - E(1)*B(2))/D(1)
70 CONTINUE
RETURN
END
|