1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
SUBROUTINE CTIMHR( LINE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NLDA, LDAVAL, TIMMIN, A, TAU, B, WORK, RWORK,
$ RESLTS, LDR1, LDR2, LDR3, NOUT )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER LDR1, LDR2, LDR3, NLDA, NM, NN, NNB, NOUT
REAL TIMMIN
* ..
* .. Array Arguments ..
INTEGER LDAVAL( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
$ NXVAL( * )
REAL RESLTS( LDR1, LDR2, LDR3, * ), RWORK( * )
COMPLEX A( * ), B( * ), TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* CTIMHR times the LAPACK routines CGEHRD, CUNGHR, and CUNMHR.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* The input line that requested this routine. The first six
* characters contain either the name of a subroutine or a
* generic path name. The remaining characters may be used to
* specify the individual routines to be timed. See ATIMIN for
* a full description of the format of the input line.
*
* NM (input) INTEGER
* The number of values of M contained in the vector MVAL.
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix size M.
*
* NN (input) INTEGER
* The number of values of N contained in the vector NVAL.
*
* NVAL (input) INTEGER array, dimension (NN)
* The values of the matrix column dimension N.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* NLDA (input) INTEGER
* The number of values of LDA contained in the vector LDAVAL.
*
* LDAVAL (input) INTEGER array, dimension (NLDA)
* The values of the leading dimension of the array A.
*
* TIMMIN (input) REAL
* The minimum time a subroutine will be timed.
*
* A (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
* where LDAMAX and NMAX are the maximum values of LDA and N.
*
* TAU (workspace) COMPLEX array, dimension (min(M,N))
*
* B (workspace) COMPLEX array, dimension (LDAMAX*NMAX)
*
* WORK (workspace) COMPLEX array, dimension (LDAMAX*NBMAX)
* where NBMAX is the maximum value of NB.
*
* RWORK (workspace) REAL array, dimension
* (min(MMAX,NMAX))
*
* RESLTS (workspace) REAL array, dimension
* (LDR1,LDR2,LDR3,4*NN+3)
* The timing results for each subroutine over the relevant
* values of M, (NB,NX), LDA, and N.
*
* LDR1 (input) INTEGER
* The first dimension of RESLTS. LDR1 >= max(1,NNB).
*
* LDR2 (input) INTEGER
* The second dimension of RESLTS. LDR2 >= max(1,NM).
*
* LDR3 (input) INTEGER
* The third dimension of RESLTS. LDR3 >= max(1,NLDA).
*
* NOUT (input) INTEGER
* The unit number for output.
*
* Internal Parameters
* ===================
*
* MODE INTEGER
* The matrix type. MODE = 3 is a geometric distribution of
* eigenvalues. See CLATMS for further details.
*
* COND REAL
* The condition number of the matrix. The singular values are
* set to values from DMAX to DMAX/COND.
*
* DMAX REAL
* The magnitude of the largest singular value.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NSUBS
PARAMETER ( NSUBS = 3 )
INTEGER MODE
REAL COND, DMAX
PARAMETER ( MODE = 3, COND = 100.0E0, DMAX = 1.0E0 )
* ..
* .. Local Scalars ..
CHARACTER LAB1, LAB2, SIDE, TRANS
CHARACTER*3 PATH
CHARACTER*6 CNAME
INTEGER I, I4, IC, ICL, IHI, ILDA, ILO, IM, IN, INB,
$ INFO, ISIDE, ISUB, ITOFF, ITRAN, LDA, LW, M,
$ M1, N, N1, NB, NX
REAL OPS, S1, S2, TIME, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER SIDES( 2 ), TRANSS( 2 )
CHARACTER*6 SUBNAM( NSUBS )
INTEGER ISEED( 4 ), RESEED( 4 )
* ..
* .. External Functions ..
REAL SECOND, SMFLOP, SOPLA
EXTERNAL SECOND, SMFLOP, SOPLA
* ..
* .. External Subroutines ..
EXTERNAL ATIMCK, ATIMIN, CGEHRD, CLACPY, CLATMS, CTIMMG,
$ CUNGHR, CUNMHR, ICOPY, SPRTB3, SPRTBL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Data statements ..
DATA SUBNAM / 'CGEHRD', 'CUNGHR', 'CUNMHR' /
DATA SIDES / 'L', 'R' / , TRANSS / 'N', 'C' /
DATA ISEED / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
* Extract the timing request from the input line.
*
PATH( 1: 1 ) = 'Complex precision'
PATH( 2: 3 ) = 'HR'
CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ GO TO 190
*
* Check that N <= LDA for the input values.
*
CNAME = LINE( 1: 6 )
CALL ATIMCK( 2, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )CNAME
GO TO 190
END IF
*
* Check that K <= LDA for CUNMHR
*
IF( TIMSUB( 3 ) ) THEN
CALL ATIMCK( 3, CNAME, NN, NVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )SUBNAM( 3 )
TIMSUB( 3 ) = .FALSE.
END IF
END IF
*
* Do for each value of M:
*
DO 120 IM = 1, NM
M = MVAL( IM )
ILO = 1
IHI = M
CALL ICOPY( 4, ISEED, 1, RESEED, 1 )
*
* Do for each value of LDA:
*
DO 110 ILDA = 1, NLDA
LDA = LDAVAL( ILDA )
*
* Do for each pair of values (NB, NX) in NBVAL and NXVAL.
*
DO 100 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
LW = MAX( 1, M*MAX( 1, NB ) )
*
* Generate a test matrix of size M by M.
*
CALL ICOPY( 4, RESEED, 1, ISEED, 1 )
CALL CLATMS( M, M, 'Uniform', ISEED, 'Nonsymm', RWORK,
$ MODE, COND, DMAX, M, M, 'No packing', B,
$ LDA, WORK, INFO )
*
IF( TIMSUB( 1 ) ) THEN
*
* CGEHRD: Reduction to Hesenberg form
*
CALL CLACPY( 'Full', M, M, B, LDA, A, LDA )
IC = 0
S1 = SECOND( )
10 CONTINUE
CALL CGEHRD( M, ILO, IHI, A, LDA, TAU, WORK, LW,
$ INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CLACPY( 'Full', M, M, B, LDA, A, LDA )
GO TO 10
END IF
*
* Subtract the time used in CLACPY.
*
ICL = 1
S1 = SECOND( )
20 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CLACPY( 'Full', M, M, A, LDA, B, LDA )
GO TO 20
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
OPS = SOPLA( 'CGEHRD', M, ILO, IHI, 0, NB )
RESLTS( INB, IM, ILDA, 1 ) = SMFLOP( OPS, TIME, INFO )
ELSE
*
* If CGEHRD was not timed, generate a matrix and factor
* it using CGEHRD anyway so that the factored form of
* the matrix can be used in timing the other routines.
*
CALL CLACPY( 'Full', M, M, B, LDA, A, LDA )
CALL CGEHRD( M, ILO, IHI, A, LDA, TAU, WORK, LW,
$ INFO )
END IF
*
IF( TIMSUB( 2 ) ) THEN
*
* CUNGHR: Generate the orthogonal matrix Q from the
* reduction to Hessenberg form A = Q*H*Q'
*
CALL CLACPY( 'Full', M, M, A, LDA, B, LDA )
IC = 0
S1 = SECOND( )
30 CONTINUE
CALL CUNGHR( M, ILO, IHI, B, LDA, TAU, WORK, LW,
$ INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CLACPY( 'Full', M, M, A, LDA, B, LDA )
GO TO 30
END IF
*
* Subtract the time used in CLACPY.
*
ICL = 1
S1 = SECOND( )
40 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CLACPY( 'Full', M, M, A, LDA, B, LDA )
GO TO 40
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
*
* Op count for CUNGHR: same as
* CUNGQR( IHI-ILO, IHI-ILO, IHI-ILO, ... )
*
OPS = SOPLA( 'CUNGQR', IHI-ILO, IHI-ILO, IHI-ILO, 0,
$ NB )
RESLTS( INB, IM, ILDA, 2 ) = SMFLOP( OPS, TIME, INFO )
END IF
*
IF( TIMSUB( 3 ) ) THEN
*
* CUNMHR: Multiply by Q stored as a product of
* elementary transformations
*
I4 = 2
DO 90 ISIDE = 1, 2
SIDE = SIDES( ISIDE )
DO 80 IN = 1, NN
N = NVAL( IN )
LW = MAX( 1, MAX( 1, NB )*N )
IF( ISIDE.EQ.1 ) THEN
M1 = M
N1 = N
ELSE
M1 = N
N1 = M
END IF
ITOFF = 0
DO 70 ITRAN = 1, 2
TRANS = TRANSS( ITRAN )
CALL CTIMMG( 0, M1, N1, B, LDA, 0, 0 )
IC = 0
S1 = SECOND( )
50 CONTINUE
CALL CUNMHR( SIDE, TRANS, M1, N1, ILO, IHI,
$ A, LDA, TAU, B, LDA, WORK, LW,
$ INFO )
S2 = SECOND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL CTIMMG( 0, M1, N1, B, LDA, 0, 0 )
GO TO 50
END IF
*
* Subtract the time used in CTIMMG.
*
ICL = 1
S1 = SECOND( )
60 CONTINUE
S2 = SECOND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL CTIMMG( 0, M1, N1, B, LDA, 0, 0 )
GO TO 60
END IF
*
TIME = ( TIME-UNTIME ) / REAL( IC )
*
* Op count for CUNMHR, SIDE='L': same as
* CUNMQR( 'L', TRANS, IHI-ILO, N, IHI-ILO, ...)
*
* Op count for CUNMHR, SIDE='R': same as
* CUNMQR( 'R', TRANS, M, IHI-ILO, IHI-ILO, ...)
*
IF( ISIDE.EQ.1 ) THEN
OPS = SOPLA( 'CUNMQR', IHI-ILO, N1,
$ IHI-ILO, -1, NB )
ELSE
OPS = SOPLA( 'CUNMQR', M1, IHI-ILO,
$ IHI-ILO, 1, NB )
END IF
*
RESLTS( INB, IM, ILDA,
$ I4+ITOFF+IN ) = SMFLOP( OPS, TIME, INFO )
ITOFF = NN
70 CONTINUE
80 CONTINUE
I4 = I4 + 2*NN
90 CONTINUE
END IF
*
100 CONTINUE
110 CONTINUE
120 CONTINUE
*
* Print tables of results for CGEHRD and CUNGHR
*
DO 140 ISUB = 1, NSUBS - 1
IF( .NOT.TIMSUB( ISUB ) )
$ GO TO 140
WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
IF( NLDA.GT.1 ) THEN
DO 130 I = 1, NLDA
WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
130 CONTINUE
END IF
WRITE( NOUT, FMT = 9995 )
CALL SPRTB3( '( NB, NX)', 'N', NNB, NBVAL, NXVAL, NM, MVAL,
$ NLDA, RESLTS( 1, 1, 1, ISUB ), LDR1, LDR2, NOUT )
140 CONTINUE
*
* Print tables of results for CUNMHR
*
ISUB = 3
IF( TIMSUB( ISUB ) ) THEN
I4 = 2
DO 180 ISIDE = 1, 2
IF( ISIDE.EQ.1 ) THEN
LAB1 = 'M'
LAB2 = 'N'
IF( NLDA.GT.1 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
DO 150 I = 1, NLDA
WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
150 CONTINUE
WRITE( NOUT, FMT = 9994 )
END IF
ELSE
LAB1 = 'N'
LAB2 = 'M'
END IF
DO 170 ITRAN = 1, 2
DO 160 IN = 1, NN
WRITE( NOUT, FMT = 9996 )SUBNAM( ISUB ),
$ SIDES( ISIDE ), TRANSS( ITRAN ), LAB2, NVAL( IN )
CALL SPRTBL( 'NB', LAB1, NNB, NBVAL, NM, MVAL, NLDA,
$ RESLTS( 1, 1, 1, I4+IN ), LDR1, LDR2,
$ NOUT )
160 CONTINUE
I4 = I4 + NN
170 CONTINUE
180 CONTINUE
END IF
190 CONTINUE
*
* Print a table of results for each timed routine.
*
RETURN
9999 FORMAT( 1X, A6, ' timing run not attempted', / )
9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops *** ' )
9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
9996 FORMAT( / 5X, A6, ' with SIDE = ''', A1, ''', TRANS = ''', A1,
$ ''', ', A1, ' =', I6, / )
9995 FORMAT( / 5X, 'ILO = 1, IHI = N', / )
9994 FORMAT( / 5X, 'ILO = 1, IHI = M if SIDE = ''L''', / 5X,
$ ' = N if SIDE = ''R''' )
*
* End of CTIMHR
*
END
|