1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
|
SUBROUTINE DTIMQL( LINE, NM, MVAL, NVAL, NK, KVAL, NNB, NBVAL,
$ NXVAL, NLDA, LDAVAL, TIMMIN, A, TAU, B, WORK,
$ RESLTS, LDR1, LDR2, LDR3, NOUT )
*
* -- LAPACK timing routine (version 3.0) --
* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
* Courant Institute, Argonne National Lab, and Rice University
* March 31, 1993
*
* .. Scalar Arguments ..
CHARACTER*80 LINE
INTEGER LDR1, LDR2, LDR3, NK, NLDA, NM, NNB, NOUT
DOUBLE PRECISION TIMMIN
* ..
* .. Array Arguments ..
INTEGER KVAL( * ), LDAVAL( * ), MVAL( * ), NBVAL( * ),
$ NVAL( * ), NXVAL( * )
DOUBLE PRECISION A( * ), B( * ), RESLTS( LDR1, LDR2, LDR3, * ),
$ TAU( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DTIMQL times the LAPACK routines to perform the QL factorization of
* a DOUBLE PRECISION general matrix.
*
* Arguments
* =========
*
* LINE (input) CHARACTER*80
* The input line that requested this routine. The first six
* characters contain either the name of a subroutine or a
* generic path name. The remaining characters may be used to
* specify the individual routines to be timed. See ATIMIN for
* a full description of the format of the input line.
*
* NM (input) INTEGER
* The number of values of M and N contained in the vectors
* MVAL and NVAL. The matrix sizes are used in pairs (M,N).
*
* MVAL (input) INTEGER array, dimension (NM)
* The values of the matrix row dimension M.
*
* NVAL (input) INTEGER array, dimension (NM)
* The values of the matrix column dimension N.
*
* NK (input) INTEGER
* The number of values of K in the vector KVAL.
*
* KVAL (input) INTEGER array, dimension (NK)
* The values of the matrix dimension K, used in DORMQL.
*
* NNB (input) INTEGER
* The number of values of NB and NX contained in the
* vectors NBVAL and NXVAL. The blocking parameters are used
* in pairs (NB,NX).
*
* NBVAL (input) INTEGER array, dimension (NNB)
* The values of the blocksize NB.
*
* NXVAL (input) INTEGER array, dimension (NNB)
* The values of the crossover point NX.
*
* NLDA (input) INTEGER
* The number of values of LDA contained in the vector LDAVAL.
*
* LDAVAL (input) INTEGER array, dimension (NLDA)
* The values of the leading dimension of the array A.
*
* TIMMIN (input) DOUBLE PRECISION
* The minimum time a subroutine will be timed.
*
* A (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)
* where LDAMAX and NMAX are the maximum values of LDA and N.
*
* TAU (workspace) DOUBLE PRECISION array, dimension (min(M,N))
*
* B (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NMAX)
*
* WORK (workspace) DOUBLE PRECISION array, dimension (LDAMAX*NBMAX)
* where NBMAX is the maximum value of NB.
*
* RESLTS (workspace) DOUBLE PRECISION array, dimension
* (LDR1,LDR2,LDR3,2*NK)
* The timing results for each subroutine over the relevant
* values of (M,N), (NB,NX), and LDA.
*
* LDR1 (input) INTEGER
* The first dimension of RESLTS. LDR1 >= max(1,NNB).
*
* LDR2 (input) INTEGER
* The second dimension of RESLTS. LDR2 >= max(1,NM).
*
* LDR3 (input) INTEGER
* The third dimension of RESLTS. LDR3 >= max(1,NLDA).
*
* NOUT (input) INTEGER
* The unit number for output.
*
* Internal Parameters
* ===================
*
* MODE INTEGER
* The matrix type. MODE = 3 is a geometric distribution of
* eigenvalues. See DLATMS for further details.
*
* COND DOUBLE PRECISION
* The condition number of the matrix. The singular values are
* set to values from DMAX to DMAX/COND.
*
* DMAX DOUBLE PRECISION
* The magnitude of the largest singular value.
*
* =====================================================================
*
* .. Parameters ..
INTEGER NSUBS
PARAMETER ( NSUBS = 3 )
INTEGER MODE
DOUBLE PRECISION COND, DMAX
PARAMETER ( MODE = 3, COND = 100.0D0, DMAX = 1.0D0 )
* ..
* .. Local Scalars ..
CHARACTER LABM, SIDE, TRANS
CHARACTER*3 PATH
CHARACTER*6 CNAME
INTEGER I, I4, IC, ICL, IK, ILDA, IM, IMX, INB, INFO,
$ ISIDE, ISUB, ITOFF, ITRAN, K, K1, LDA, LW, M,
$ M1, MINMN, N, N1, NB, NX
DOUBLE PRECISION OPS, S1, S2, TIME, UNTIME
* ..
* .. Local Arrays ..
LOGICAL TIMSUB( NSUBS )
CHARACTER SIDES( 2 ), TRANSS( 2 )
CHARACTER*6 SUBNAM( NSUBS )
INTEGER ISEED( 4 ), MUSE( 12 ), NUSE( 12 ), RESEED( 4 )
* ..
* .. External Functions ..
DOUBLE PRECISION DMFLOP, DOPLA, DSECND
EXTERNAL DMFLOP, DOPLA, DSECND
* ..
* .. External Subroutines ..
EXTERNAL ATIMCK, ATIMIN, DGEQLF, DLACPY, DLATMS, DORGQL,
$ DORMQL, DPRTB4, DPRTB5, DTIMMG, ICOPY, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Data statements ..
DATA SUBNAM / 'DGEQLF', 'DORGQL', 'DORMQL' /
DATA SIDES / 'L', 'R' / , TRANSS / 'N', 'T' /
DATA ISEED / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
* Extract the timing request from the input line.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'QL'
CALL ATIMIN( PATH, LINE, NSUBS, SUBNAM, TIMSUB, NOUT, INFO )
IF( INFO.NE.0 )
$ GO TO 230
*
* Check that M <= LDA for the input values.
*
CNAME = LINE( 1: 6 )
CALL ATIMCK( 1, CNAME, NM, MVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )CNAME
GO TO 230
END IF
*
* Do for each pair of values (M,N):
*
DO 70 IM = 1, NM
M = MVAL( IM )
N = NVAL( IM )
MINMN = MIN( M, N )
CALL ICOPY( 4, ISEED, 1, RESEED, 1 )
*
* Do for each value of LDA:
*
DO 60 ILDA = 1, NLDA
LDA = LDAVAL( ILDA )
*
* Do for each pair of values (NB, NX) in NBVAL and NXVAL.
*
DO 50 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
LW = MAX( 1, N*MAX( 1, NB ) )
*
* Generate a test matrix of size M by N.
*
CALL ICOPY( 4, RESEED, 1, ISEED, 1 )
CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', TAU,
$ MODE, COND, DMAX, M, N, 'No packing', B,
$ LDA, WORK, INFO )
*
IF( TIMSUB( 1 ) ) THEN
*
* DGEQLF: QL factorization
*
CALL DLACPY( 'Full', M, N, B, LDA, A, LDA )
IC = 0
S1 = DSECND( )
10 CONTINUE
CALL DGEQLF( M, N, A, LDA, TAU, WORK, LW, INFO )
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL DLACPY( 'Full', M, N, B, LDA, A, LDA )
GO TO 10
END IF
*
* Subtract the time used in DLACPY.
*
ICL = 1
S1 = DSECND( )
20 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL DLACPY( 'Full', M, N, A, LDA, B, LDA )
GO TO 20
END IF
*
TIME = ( TIME-UNTIME ) / DBLE( IC )
OPS = DOPLA( 'DGEQLF', M, N, 0, 0, NB )
RESLTS( INB, IM, ILDA, 1 ) = DMFLOP( OPS, TIME, INFO )
ELSE
*
* If DGEQLF was not timed, generate a matrix and factor
* it using DGEQLF anyway so that the factored form of
* the matrix can be used in timing the other routines.
*
CALL DLACPY( 'Full', M, N, B, LDA, A, LDA )
CALL DGEQLF( M, N, A, LDA, TAU, WORK, LW, INFO )
END IF
*
IF( TIMSUB( 2 ) ) THEN
*
* DORGQL: Generate orthogonal matrix Q from the QL
* factorization
*
CALL DLACPY( 'Full', M, MINMN, A, LDA, B, LDA )
IC = 0
S1 = DSECND( )
30 CONTINUE
CALL DORGQL( M, MINMN, MINMN, B, LDA, TAU, WORK, LW,
$ INFO )
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL DLACPY( 'Full', M, MINMN, A, LDA, B, LDA )
GO TO 30
END IF
*
* Subtract the time used in DLACPY.
*
ICL = 1
S1 = DSECND( )
40 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL DLACPY( 'Full', M, MINMN, A, LDA, B, LDA )
GO TO 40
END IF
*
TIME = ( TIME-UNTIME ) / DBLE( IC )
OPS = DOPLA( 'DORGQL', M, MINMN, MINMN, 0, NB )
RESLTS( INB, IM, ILDA, 2 ) = DMFLOP( OPS, TIME, INFO )
END IF
*
50 CONTINUE
60 CONTINUE
70 CONTINUE
*
* Print tables of results
*
DO 90 ISUB = 1, NSUBS - 1
IF( .NOT.TIMSUB( ISUB ) )
$ GO TO 90
WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
IF( NLDA.GT.1 ) THEN
DO 80 I = 1, NLDA
WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
80 CONTINUE
END IF
WRITE( NOUT, FMT = * )
IF( ISUB.EQ.2 )
$ WRITE( NOUT, FMT = 9996 )
CALL DPRTB4( '( NB, NX)', 'M', 'N', NNB, NBVAL, NXVAL, NM,
$ MVAL, NVAL, NLDA, RESLTS( 1, 1, 1, ISUB ), LDR1,
$ LDR2, NOUT )
90 CONTINUE
*
* Time DORMQL separately. Here the starting matrix is M by N, and
* K is the free dimension of the matrix multiplied by Q.
*
IF( TIMSUB( 3 ) ) THEN
*
* Check that K <= LDA for the input values.
*
CALL ATIMCK( 3, CNAME, NK, KVAL, NLDA, LDAVAL, NOUT, INFO )
IF( INFO.GT.0 ) THEN
WRITE( NOUT, FMT = 9999 )SUBNAM( 3 )
GO TO 230
END IF
*
* Use only the pairs (M,N) where M >= N.
*
IMX = 0
DO 100 IM = 1, NM
IF( MVAL( IM ).GE.NVAL( IM ) ) THEN
IMX = IMX + 1
MUSE( IMX ) = MVAL( IM )
NUSE( IMX ) = NVAL( IM )
END IF
100 CONTINUE
*
* DORMQL: Multiply by Q stored as a product of elementary
* transformations
*
* Do for each pair of values (M,N):
*
DO 180 IM = 1, IMX
M = MUSE( IM )
N = NUSE( IM )
*
* Do for each value of LDA:
*
DO 170 ILDA = 1, NLDA
LDA = LDAVAL( ILDA )
*
* Generate an M by N matrix and form its QL decomposition.
*
CALL DLATMS( M, N, 'Uniform', ISEED, 'Nonsymm', TAU,
$ MODE, COND, DMAX, M, N, 'No packing', A,
$ LDA, WORK, INFO )
LW = MAX( 1, N*MAX( 1, NB ) )
CALL DGEQLF( M, N, A, LDA, TAU, WORK, LW, INFO )
*
* Do first for SIDE = 'L', then for SIDE = 'R'
*
I4 = 0
DO 160 ISIDE = 1, 2
SIDE = SIDES( ISIDE )
*
* Do for each pair of values (NB, NX) in NBVAL and
* NXVAL.
*
DO 150 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
NX = NXVAL( INB )
CALL XLAENV( 3, NX )
*
* Do for each value of K in KVAL
*
DO 140 IK = 1, NK
K = KVAL( IK )
*
* Sort out which variable is which
*
IF( ISIDE.EQ.1 ) THEN
M1 = M
K1 = N
N1 = K
LW = MAX( 1, N1*MAX( 1, NB ) )
ELSE
N1 = M
K1 = N
M1 = K
LW = MAX( 1, M1*MAX( 1, NB ) )
END IF
*
* Do first for TRANS = 'N', then for TRANS = 'T'
*
ITOFF = 0
DO 130 ITRAN = 1, 2
TRANS = TRANSS( ITRAN )
CALL DTIMMG( 0, M1, N1, B, LDA, 0, 0 )
IC = 0
S1 = DSECND( )
110 CONTINUE
CALL DORMQL( SIDE, TRANS, M1, N1, K1, A, LDA,
$ TAU, B, LDA, WORK, LW, INFO )
S2 = DSECND( )
TIME = S2 - S1
IC = IC + 1
IF( TIME.LT.TIMMIN ) THEN
CALL DTIMMG( 0, M1, N1, B, LDA, 0, 0 )
GO TO 110
END IF
*
* Subtract the time used in DTIMMG.
*
ICL = 1
S1 = DSECND( )
120 CONTINUE
S2 = DSECND( )
UNTIME = S2 - S1
ICL = ICL + 1
IF( ICL.LE.IC ) THEN
CALL DTIMMG( 0, M1, N1, B, LDA, 0, 0 )
GO TO 120
END IF
*
TIME = ( TIME-UNTIME ) / DBLE( IC )
OPS = DOPLA( 'DORMQL', M1, N1, K1, ISIDE-1,
$ NB )
RESLTS( INB, IM, ILDA,
$ I4+ITOFF+IK ) = DMFLOP( OPS, TIME, INFO )
ITOFF = NK
130 CONTINUE
140 CONTINUE
150 CONTINUE
I4 = 2*NK
160 CONTINUE
170 CONTINUE
180 CONTINUE
*
* Print tables of results
*
ISUB = 3
I4 = 1
IF( IMX.GE.1 ) THEN
DO 220 ISIDE = 1, 2
SIDE = SIDES( ISIDE )
IF( ISIDE.EQ.1 ) THEN
WRITE( NOUT, FMT = 9998 )SUBNAM( ISUB )
IF( NLDA.GT.1 ) THEN
DO 190 I = 1, NLDA
WRITE( NOUT, FMT = 9997 )I, LDAVAL( I )
190 CONTINUE
END IF
END IF
DO 210 ITRAN = 1, 2
TRANS = TRANSS( ITRAN )
DO 200 IK = 1, NK
IF( ISIDE.EQ.1 ) THEN
N = KVAL( IK )
WRITE( NOUT, FMT = 9995 )SUBNAM( ISUB ), SIDE,
$ TRANS, 'N', N
LABM = 'M'
ELSE
M = KVAL( IK )
WRITE( NOUT, FMT = 9995 )SUBNAM( ISUB ), SIDE,
$ TRANS, 'M', M
LABM = 'N'
END IF
CALL DPRTB5( 'NB', LABM, 'K', NNB, NBVAL, IMX,
$ MUSE, NUSE, NLDA,
$ RESLTS( 1, 1, 1, I4 ), LDR1, LDR2,
$ NOUT )
I4 = I4 + 1
200 CONTINUE
210 CONTINUE
220 CONTINUE
ELSE
WRITE( NOUT, FMT = 9994 )SUBNAM( ISUB )
END IF
END IF
230 CONTINUE
9999 FORMAT( 1X, A6, ' timing run not attempted', / )
9998 FORMAT( / ' *** Speed of ', A6, ' in megaflops ***' )
9997 FORMAT( 5X, 'line ', I2, ' with LDA = ', I5 )
9996 FORMAT( 5X, 'K = min(M,N)', / )
9995 FORMAT( / 5X, A6, ' with SIDE = ''', A1, ''', TRANS = ''', A1,
$ ''', ', A1, ' =', I6, / )
9994 FORMAT( ' *** No pairs (M,N) found with M >= N: ', A6,
$ ' not timed' )
RETURN
*
* End of DTIMQL
*
END
|