| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 
 | *> \brief \b CLAHR2 reduces the specified number of first columns of a general rectangular matrix A so that elements below the specified subdiagonal are zero, and returns auxiliary matrices which are needed to apply the transformation to the unreduced part of A.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAHR2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clahr2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clahr2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clahr2.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LDT, LDY, N, NB
*       ..
*       .. Array Arguments ..
*       COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
*      $                   Y( LDY, NB )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CLAHR2 reduces the first NB columns of A complex general n-BY-(n-k+1)
*> matrix A so that elements below the k-th subdiagonal are zero. The
*> reduction is performed by an unitary similarity transformation
*> Q**H * A * Q. The routine returns the matrices V and T which determine
*> Q as a block reflector I - V*T*v**H, and also the matrix Y = A * V * T.
*>
*> This is an auxiliary routine called by CGEHRD.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The offset for the reduction. Elements below the k-th
*>          subdiagonal in the first NB columns are reduced to zero.
*>          K < N.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER
*>          The number of columns to be reduced.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N-K+1)
*>          On entry, the n-by-(n-k+1) general matrix A.
*>          On exit, the elements on and above the k-th subdiagonal in
*>          the first NB columns are overwritten with the corresponding
*>          elements of the reduced matrix; the elements below the k-th
*>          subdiagonal, with the array TAU, represent the matrix Q as a
*>          product of elementary reflectors. The other columns of A are
*>          unchanged. See Further Details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (NB)
*>          The scalar factors of the elementary reflectors. See Further
*>          Details.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*>          T is COMPLEX array, dimension (LDT,NB)
*>          The upper triangular matrix T.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*>          LDT is INTEGER
*>          The leading dimension of the array T.  LDT >= NB.
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*>          Y is COMPLEX array, dimension (LDY,NB)
*>          The n-by-nb matrix Y.
*> \endverbatim
*>
*> \param[in] LDY
*> \verbatim
*>          LDY is INTEGER
*>          The leading dimension of the array Y. LDY >= N.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERauxiliary
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The matrix Q is represented as a product of nb elementary reflectors
*>
*>     Q = H(1) H(2) . . . H(nb).
*>
*>  Each H(i) has the form
*>
*>     H(i) = I - tau * v * v**H
*>
*>  where tau is a complex scalar, and v is a complex vector with
*>  v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in
*>  A(i+k+1:n,i), and tau in TAU(i).
*>
*>  The elements of the vectors v together form the (n-k+1)-by-nb matrix
*>  V which is needed, with T and Y, to apply the transformation to the
*>  unreduced part of the matrix, using an update of the form:
*>  A := (I - V*T*V**H) * (A - Y*V**H).
*>
*>  The contents of A on exit are illustrated by the following example
*>  with n = 7, k = 3 and nb = 2:
*>
*>     ( a   a   a   a   a )
*>     ( a   a   a   a   a )
*>     ( a   a   a   a   a )
*>     ( h   h   a   a   a )
*>     ( v1  h   a   a   a )
*>     ( v1  v2  a   a   a )
*>     ( v1  v2  a   a   a )
*>
*>  where a denotes an element of the original matrix A, h denotes a
*>  modified element of the upper Hessenberg matrix H, and vi denotes an
*>  element of the vector defining H(i).
*>
*>  This subroutine is a slight modification of LAPACK-3.0's CLAHRD
*>  incorporating improvements proposed by Quintana-Orti and Van de
*>  Gejin. Note that the entries of A(1:K,2:NB) differ from those
*>  returned by the original LAPACK-3.0's CLAHRD routine. (This
*>  subroutine is not backward compatible with LAPACK-3.0's CLAHRD.)
*> \endverbatim
*
*> \par References:
*  ================
*>
*>  Gregorio Quintana-Orti and Robert van de Geijn, "Improving the
*>  performance of reduction to Hessenberg form," ACM Transactions on
*>  Mathematical Software, 32(2):180-194, June 2006.
*>
*  =====================================================================
      SUBROUTINE CLAHR2( N, K, NB, A, LDA, TAU, T, LDT, Y, LDY )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LDT, LDY, N, NB
*     ..
*     .. Array Arguments ..
      COMPLEX            A( LDA, * ), T( LDT, NB ), TAU( NB ),
     $                   Y( LDY, NB )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0E+0, 0.0E+0 ),
     $                     ONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX            EI
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CGEMM, CGEMV, CLACPY,
     $                   CLARFG, CSCAL, CTRMM, CTRMV, CLACGV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( N.LE.1 )
     $   RETURN
*
      DO 10 I = 1, NB
         IF( I.GT.1 ) THEN
*
*           Update A(K+1:N,I)
*
*           Update I-th column of A - Y * V**H
*
            CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
            CALL CGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE, Y(K+1,1), LDY,
     $                  A( K+I-1, 1 ), LDA, ONE, A( K+1, I ), 1 )
            CALL CLACGV( I-1, A( K+I-1, 1 ), LDA )
*
*           Apply I - V * T**H * V**H to this column (call it b) from the
*           left, using the last column of T as workspace
*
*           Let  V = ( V1 )   and   b = ( b1 )   (first I-1 rows)
*                    ( V2 )             ( b2 )
*
*           where V1 is unit lower triangular
*
*           w := V1**H * b1
*
            CALL CCOPY( I-1, A( K+1, I ), 1, T( 1, NB ), 1 )
            CALL CTRMV( 'Lower', 'Conjugate transpose', 'UNIT',
     $                  I-1, A( K+1, 1 ),
     $                  LDA, T( 1, NB ), 1 )
*
*           w := w + V2**H * b2
*
            CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1,
     $                  ONE, A( K+I, 1 ),
     $                  LDA, A( K+I, I ), 1, ONE, T( 1, NB ), 1 )
*
*           w := T**H * w
*
            CALL CTRMV( 'Upper', 'Conjugate transpose', 'NON-UNIT',
     $                  I-1, T, LDT,
     $                  T( 1, NB ), 1 )
*
*           b2 := b2 - V2*w
*
            CALL CGEMV( 'NO TRANSPOSE', N-K-I+1, I-1, -ONE,
     $                  A( K+I, 1 ),
     $                  LDA, T( 1, NB ), 1, ONE, A( K+I, I ), 1 )
*
*           b1 := b1 - V1*w
*
            CALL CTRMV( 'Lower', 'NO TRANSPOSE',
     $                  'UNIT', I-1,
     $                  A( K+1, 1 ), LDA, T( 1, NB ), 1 )
            CALL CAXPY( I-1, -ONE, T( 1, NB ), 1, A( K+1, I ), 1 )
*
            A( K+I-1, I-1 ) = EI
         END IF
*
*        Generate the elementary reflector H(I) to annihilate
*        A(K+I+1:N,I)
*
         CALL CLARFG( N-K-I+1, A( K+I, I ), A( MIN( K+I+1, N ), I ), 1,
     $                TAU( I ) )
         EI = A( K+I, I )
         A( K+I, I ) = ONE
*
*        Compute  Y(K+1:N,I)
*
         CALL CGEMV( 'NO TRANSPOSE', N-K, N-K-I+1,
     $               ONE, A( K+1, I+1 ),
     $               LDA, A( K+I, I ), 1, ZERO, Y( K+1, I ), 1 )
         CALL CGEMV( 'Conjugate transpose', N-K-I+1, I-1,
     $               ONE, A( K+I, 1 ), LDA,
     $               A( K+I, I ), 1, ZERO, T( 1, I ), 1 )
         CALL CGEMV( 'NO TRANSPOSE', N-K, I-1, -ONE,
     $               Y( K+1, 1 ), LDY,
     $               T( 1, I ), 1, ONE, Y( K+1, I ), 1 )
         CALL CSCAL( N-K, TAU( I ), Y( K+1, I ), 1 )
*
*        Compute T(1:I,I)
*
         CALL CSCAL( I-1, -TAU( I ), T( 1, I ), 1 )
         CALL CTRMV( 'Upper', 'No Transpose', 'NON-UNIT',
     $               I-1, T, LDT,
     $               T( 1, I ), 1 )
         T( I, I ) = TAU( I )
*
   10 CONTINUE
      A( K+NB, NB ) = EI
*
*     Compute Y(1:K,1:NB)
*
      CALL CLACPY( 'ALL', K, NB, A( 1, 2 ), LDA, Y, LDY )
      CALL CTRMM( 'RIGHT', 'Lower', 'NO TRANSPOSE',
     $            'UNIT', K, NB,
     $            ONE, A( K+1, 1 ), LDA, Y, LDY )
      IF( N.GT.K+NB )
     $   CALL CGEMM( 'NO TRANSPOSE', 'NO TRANSPOSE', K,
     $               NB, N-K-NB, ONE,
     $               A( 1, 2+NB ), LDA, A( K+1+NB, 1 ), LDA, ONE, Y,
     $               LDY )
      CALL CTRMM( 'RIGHT', 'Upper', 'NO TRANSPOSE',
     $            'NON-UNIT', K, NB,
     $            ONE, T, LDT, Y, LDY )
*
      RETURN
*
*     End of CLAHR2
*
      END
 |