| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 
 | *> \brief \b CLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur decomposition.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAQR4 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr4.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr4.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr4.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
*                          IHIZ, Z, LDZ, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
*       LOGICAL            WANTT, WANTZ
*       ..
*       .. Array Arguments ..
*       COMPLEX            H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
*       ..
*
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    CLAQR4 implements one level of recursion for CLAQR0.
*>    It is a complete implementation of the small bulge multi-shift
*>    QR algorithm.  It may be called by CLAQR0 and, for large enough
*>    deflation window size, it may be called by CLAQR3.  This
*>    subroutine is identical to CLAQR0 except that it calls CLAQR2
*>    instead of CLAQR3.
*>
*>    CLAQR4 computes the eigenvalues of a Hessenberg matrix H
*>    and, optionally, the matrices T and Z from the Schur decomposition
*>    H = Z T Z**H, where T is an upper triangular matrix (the
*>    Schur form), and Z is the unitary matrix of Schur vectors.
*>
*>    Optionally Z may be postmultiplied into an input unitary
*>    matrix Q so that this routine can give the Schur factorization
*>    of a matrix A which has been reduced to the Hessenberg form H
*>    by the unitary matrix Q:  A = Q*H*Q**H = (QZ)*H*(QZ)**H.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] WANTT
*> \verbatim
*>          WANTT is LOGICAL
*>          = .TRUE. : the full Schur form T is required;
*>          = .FALSE.: only eigenvalues are required.
*> \endverbatim
*>
*> \param[in] WANTZ
*> \verbatim
*>          WANTZ is LOGICAL
*>          = .TRUE. : the matrix of Schur vectors Z is required;
*>          = .FALSE.: Schur vectors are not required.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>           The order of the matrix H.  N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*>          ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*>          IHI is INTEGER
*>           It is assumed that H is already upper triangular in rows
*>           and columns 1:ILO-1 and IHI+1:N and, if ILO > 1,
*>           H(ILO,ILO-1) is zero. ILO and IHI are normally set by a
*>           previous call to CGEBAL, and then passed to CGEHRD when the
*>           matrix output by CGEBAL is reduced to Hessenberg form.
*>           Otherwise, ILO and IHI should be set to 1 and N,
*>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
*>           If N = 0, then ILO = 1 and IHI = 0.
*> \endverbatim
*>
*> \param[in,out] H
*> \verbatim
*>          H is COMPLEX array, dimension (LDH,N)
*>           On entry, the upper Hessenberg matrix H.
*>           On exit, if INFO = 0 and WANTT is .TRUE., then H
*>           contains the upper triangular matrix T from the Schur
*>           decomposition (the Schur form). If INFO = 0 and WANT is
*>           .FALSE., then the contents of H are unspecified on exit.
*>           (The output value of H when INFO > 0 is given under the
*>           description of INFO below.)
*>
*>           This subroutine may explicitly set H(i,j) = 0 for i > j and
*>           j = 1, 2, ... ILO-1 or j = IHI+1, IHI+2, ... N.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*>          LDH is INTEGER
*>           The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[out] W
*> \verbatim
*>          W is COMPLEX array, dimension (N)
*>           The computed eigenvalues of H(ILO:IHI,ILO:IHI) are stored
*>           in W(ILO:IHI). If WANTT is .TRUE., then the eigenvalues are
*>           stored in the same order as on the diagonal of the Schur
*>           form returned in H, with W(i) = H(i,i).
*> \endverbatim
*>
*> \param[in] ILOZ
*> \verbatim
*>          ILOZ is INTEGER
*> \endverbatim
*>
*> \param[in] IHIZ
*> \verbatim
*>          IHIZ is INTEGER
*>           Specify the rows of Z to which transformations must be
*>           applied if WANTZ is .TRUE..
*>           1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*>          Z is COMPLEX array, dimension (LDZ,IHI)
*>           If WANTZ is .FALSE., then Z is not referenced.
*>           If WANTZ is .TRUE., then Z(ILO:IHI,ILOZ:IHIZ) is
*>           replaced by Z(ILO:IHI,ILOZ:IHIZ)*U where U is the
*>           orthogonal Schur factor of H(ILO:IHI,ILO:IHI).
*>           (The output value of Z when INFO > 0 is given under
*>           the description of INFO below.)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*>          LDZ is INTEGER
*>           The leading dimension of the array Z.  if WANTZ is .TRUE.
*>           then LDZ >= MAX(1,IHIZ).  Otherwise, LDZ >= 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension LWORK
*>           On exit, if LWORK = -1, WORK(1) returns an estimate of
*>           the optimal value for LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>           The dimension of the array WORK.  LWORK >= max(1,N)
*>           is sufficient, but LWORK typically as large as 6*N may
*>           be required for optimal performance.  A workspace query
*>           to determine the optimal workspace size is recommended.
*>
*>           If LWORK = -1, then CLAQR4 does a workspace query.
*>           In this case, CLAQR4 checks the input parameters and
*>           estimates the optimal workspace size for the given
*>           values of N, ILO and IHI.  The estimate is returned
*>           in WORK(1).  No error message related to LWORK is
*>           issued by XERBLA.  Neither H nor Z are accessed.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>             = 0:  successful exit
*>             > 0:  if INFO = i, CLAQR4 failed to compute all of
*>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
*>                and WI contain those eigenvalues which have been
*>                successfully computed.  (Failures are rare.)
*>
*>                If INFO > 0 and WANT is .FALSE., then on exit,
*>                the remaining unconverged eigenvalues are the eigen-
*>                values of the upper Hessenberg matrix rows and
*>                columns ILO through INFO of the final, output
*>                value of H.
*>
*>                If INFO > 0 and WANTT is .TRUE., then on exit
*>
*>           (*)  (initial value of H)*U  = U*(final value of H)
*>
*>                where U is a unitary matrix.  The final
*>                value of  H is upper Hessenberg and triangular in
*>                rows and columns INFO+1 through IHI.
*>
*>                If INFO > 0 and WANTZ is .TRUE., then on exit
*>
*>                  (final value of Z(ILO:IHI,ILOZ:IHIZ)
*>                   =  (initial value of Z(ILO:IHI,ILOZ:IHIZ)*U
*>
*>                where U is the unitary matrix in (*) (regard-
*>                less of the value of WANTT.)
*>
*>                If INFO > 0 and WANTZ is .FALSE., then Z is not
*>                accessed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERauxiliary
*
*> \par Contributors:
*  ==================
*>
*>       Karen Braman and Ralph Byers, Department of Mathematics,
*>       University of Kansas, USA
*
*> \par References:
*  ================
*>
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
*>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
*>       929--947, 2002.
*> \n
*>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
*>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
*>       of Matrix Analysis, volume 23, pages 948--973, 2002.
*>
*  =====================================================================
      SUBROUTINE CLAQR4( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
     $                   IHIZ, Z, LDZ, WORK, LWORK, INFO )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, LWORK, N
      LOGICAL            WANTT, WANTZ
*     ..
*     .. Array Arguments ..
      COMPLEX            H( LDH, * ), W( * ), WORK( * ), Z( LDZ, * )
*     ..
*
*
*  ================================================================
*
*     .. Parameters ..
*
*     ==== Matrices of order NTINY or smaller must be processed by
*     .    CLAHQR because of insufficient subdiagonal scratch space.
*     .    (This is a hard limit.) ====
      INTEGER            NTINY
      PARAMETER          ( NTINY = 15 )
*
*     ==== Exceptional deflation windows:  try to cure rare
*     .    slow convergence by varying the size of the
*     .    deflation window after KEXNW iterations. ====
      INTEGER            KEXNW
      PARAMETER          ( KEXNW = 5 )
*
*     ==== Exceptional shifts: try to cure rare slow convergence
*     .    with ad-hoc exceptional shifts every KEXSH iterations.
*     .    ====
      INTEGER            KEXSH
      PARAMETER          ( KEXSH = 6 )
*
*     ==== The constant WILK1 is used to form the exceptional
*     .    shifts. ====
      REAL               WILK1
      PARAMETER          ( WILK1 = 0.75e0 )
      COMPLEX            ZERO, ONE
      PARAMETER          ( ZERO = ( 0.0e0, 0.0e0 ),
     $                   ONE = ( 1.0e0, 0.0e0 ) )
      REAL               TWO
      PARAMETER          ( TWO = 2.0e0 )
*     ..
*     .. Local Scalars ..
      COMPLEX            AA, BB, CC, CDUM, DD, DET, RTDISC, SWAP, TR2
      REAL               S
      INTEGER            I, INF, IT, ITMAX, K, KACC22, KBOT, KDU, KS,
     $                   KT, KTOP, KU, KV, KWH, KWTOP, KWV, LD, LS,
     $                   LWKOPT, NDEC, NDFL, NH, NHO, NIBBLE, NMIN, NS,
     $                   NSMAX, NSR, NVE, NW, NWMAX, NWR, NWUPBD
      LOGICAL            SORTED
      CHARACTER          JBCMPZ*2
*     ..
*     .. External Functions ..
      INTEGER            ILAENV
      EXTERNAL           ILAENV
*     ..
*     .. Local Arrays ..
      COMPLEX            ZDUM( 1, 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           CLACPY, CLAHQR, CLAQR2, CLAQR5
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, CMPLX, INT, MAX, MIN, MOD, REAL,
     $                   SQRT
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
      INFO = 0
*
*     ==== Quick return for N = 0: nothing to do. ====
*
      IF( N.EQ.0 ) THEN
         WORK( 1 ) = ONE
         RETURN
      END IF
*
      IF( N.LE.NTINY ) THEN
*
*        ==== Tiny matrices must use CLAHQR. ====
*
         LWKOPT = 1
         IF( LWORK.NE.-1 )
     $      CALL CLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, W, ILOZ,
     $                   IHIZ, Z, LDZ, INFO )
      ELSE
*
*        ==== Use small bulge multi-shift QR with aggressive early
*        .    deflation on larger-than-tiny matrices. ====
*
*        ==== Hope for the best. ====
*
         INFO = 0
*
*        ==== Set up job flags for ILAENV. ====
*
         IF( WANTT ) THEN
            JBCMPZ( 1: 1 ) = 'S'
         ELSE
            JBCMPZ( 1: 1 ) = 'E'
         END IF
         IF( WANTZ ) THEN
            JBCMPZ( 2: 2 ) = 'V'
         ELSE
            JBCMPZ( 2: 2 ) = 'N'
         END IF
*
*        ==== NWR = recommended deflation window size.  At this
*        .    point,  N .GT. NTINY = 15, so there is enough
*        .    subdiagonal workspace for NWR.GE.2 as required.
*        .    (In fact, there is enough subdiagonal space for
*        .    NWR.GE.4.) ====
*
         NWR = ILAENV( 13, 'CLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NWR = MAX( 2, NWR )
         NWR = MIN( IHI-ILO+1, ( N-1 ) / 3, NWR )
*
*        ==== NSR = recommended number of simultaneous shifts.
*        .    At this point N .GT. NTINY = 15, so there is at
*        .    enough subdiagonal workspace for NSR to be even
*        .    and greater than or equal to two as required. ====
*
         NSR = ILAENV( 15, 'CLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NSR = MIN( NSR, ( N-3 ) / 6, IHI-ILO )
         NSR = MAX( 2, NSR-MOD( NSR, 2 ) )
*
*        ==== Estimate optimal workspace ====
*
*        ==== Workspace query call to CLAQR2 ====
*
         CALL CLAQR2( WANTT, WANTZ, N, ILO, IHI, NWR+1, H, LDH, ILOZ,
     $                IHIZ, Z, LDZ, LS, LD, W, H, LDH, N, H, LDH, N, H,
     $                LDH, WORK, -1 )
*
*        ==== Optimal workspace = MAX(CLAQR5, CLAQR2) ====
*
         LWKOPT = MAX( 3*NSR / 2, INT( WORK( 1 ) ) )
*
*        ==== Quick return in case of workspace query. ====
*
         IF( LWORK.EQ.-1 ) THEN
            WORK( 1 ) = CMPLX( LWKOPT, 0 )
            RETURN
         END IF
*
*        ==== CLAHQR/CLAQR0 crossover point ====
*
         NMIN = ILAENV( 12, 'CLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NMIN = MAX( NTINY, NMIN )
*
*        ==== Nibble crossover point ====
*
         NIBBLE = ILAENV( 14, 'CLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         NIBBLE = MAX( 0, NIBBLE )
*
*        ==== Accumulate reflections during ttswp?  Use block
*        .    2-by-2 structure during matrix-matrix multiply? ====
*
         KACC22 = ILAENV( 16, 'CLAQR4', JBCMPZ, N, ILO, IHI, LWORK )
         KACC22 = MAX( 0, KACC22 )
         KACC22 = MIN( 2, KACC22 )
*
*        ==== NWMAX = the largest possible deflation window for
*        .    which there is sufficient workspace. ====
*
         NWMAX = MIN( ( N-1 ) / 3, LWORK / 2 )
         NW = NWMAX
*
*        ==== NSMAX = the Largest number of simultaneous shifts
*        .    for which there is sufficient workspace. ====
*
         NSMAX = MIN( ( N-3 ) / 6, 2*LWORK / 3 )
         NSMAX = NSMAX - MOD( NSMAX, 2 )
*
*        ==== NDFL: an iteration count restarted at deflation. ====
*
         NDFL = 1
*
*        ==== ITMAX = iteration limit ====
*
         ITMAX = MAX( 30, 2*KEXSH )*MAX( 10, ( IHI-ILO+1 ) )
*
*        ==== Last row and column in the active block ====
*
         KBOT = IHI
*
*        ==== Main Loop ====
*
         DO 70 IT = 1, ITMAX
*
*           ==== Done when KBOT falls below ILO ====
*
            IF( KBOT.LT.ILO )
     $         GO TO 80
*
*           ==== Locate active block ====
*
            DO 10 K = KBOT, ILO + 1, -1
               IF( H( K, K-1 ).EQ.ZERO )
     $            GO TO 20
   10       CONTINUE
            K = ILO
   20       CONTINUE
            KTOP = K
*
*           ==== Select deflation window size:
*           .    Typical Case:
*           .      If possible and advisable, nibble the entire
*           .      active block.  If not, use size MIN(NWR,NWMAX)
*           .      or MIN(NWR+1,NWMAX) depending upon which has
*           .      the smaller corresponding subdiagonal entry
*           .      (a heuristic).
*           .
*           .    Exceptional Case:
*           .      If there have been no deflations in KEXNW or
*           .      more iterations, then vary the deflation window
*           .      size.   At first, because, larger windows are,
*           .      in general, more powerful than smaller ones,
*           .      rapidly increase the window to the maximum possible.
*           .      Then, gradually reduce the window size. ====
*
            NH = KBOT - KTOP + 1
            NWUPBD = MIN( NH, NWMAX )
            IF( NDFL.LT.KEXNW ) THEN
               NW = MIN( NWUPBD, NWR )
            ELSE
               NW = MIN( NWUPBD, 2*NW )
            END IF
            IF( NW.LT.NWMAX ) THEN
               IF( NW.GE.NH-1 ) THEN
                  NW = NH
               ELSE
                  KWTOP = KBOT - NW + 1
                  IF( CABS1( H( KWTOP, KWTOP-1 ) ).GT.
     $                CABS1( H( KWTOP-1, KWTOP-2 ) ) )NW = NW + 1
               END IF
            END IF
            IF( NDFL.LT.KEXNW ) THEN
               NDEC = -1
            ELSE IF( NDEC.GE.0 .OR. NW.GE.NWUPBD ) THEN
               NDEC = NDEC + 1
               IF( NW-NDEC.LT.2 )
     $            NDEC = 0
               NW = NW - NDEC
            END IF
*
*           ==== Aggressive early deflation:
*           .    split workspace under the subdiagonal into
*           .      - an nw-by-nw work array V in the lower
*           .        left-hand-corner,
*           .      - an NW-by-at-least-NW-but-more-is-better
*           .        (NW-by-NHO) horizontal work array along
*           .        the bottom edge,
*           .      - an at-least-NW-but-more-is-better (NHV-by-NW)
*           .        vertical work array along the left-hand-edge.
*           .        ====
*
            KV = N - NW + 1
            KT = NW + 1
            NHO = ( N-NW-1 ) - KT + 1
            KWV = NW + 2
            NVE = ( N-NW ) - KWV + 1
*
*           ==== Aggressive early deflation ====
*
            CALL CLAQR2( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
     $                   IHIZ, Z, LDZ, LS, LD, W, H( KV, 1 ), LDH, NHO,
     $                   H( KV, KT ), LDH, NVE, H( KWV, 1 ), LDH, WORK,
     $                   LWORK )
*
*           ==== Adjust KBOT accounting for new deflations. ====
*
            KBOT = KBOT - LD
*
*           ==== KS points to the shifts. ====
*
            KS = KBOT - LS + 1
*
*           ==== Skip an expensive QR sweep if there is a (partly
*           .    heuristic) reason to expect that many eigenvalues
*           .    will deflate without it.  Here, the QR sweep is
*           .    skipped if many eigenvalues have just been deflated
*           .    or if the remaining active block is small.
*
            IF( ( LD.EQ.0 ) .OR. ( ( 100*LD.LE.NW*NIBBLE ) .AND. ( KBOT-
     $          KTOP+1.GT.MIN( NMIN, NWMAX ) ) ) ) THEN
*
*              ==== NS = nominal number of simultaneous shifts.
*              .    This may be lowered (slightly) if CLAQR2
*              .    did not provide that many shifts. ====
*
               NS = MIN( NSMAX, NSR, MAX( 2, KBOT-KTOP ) )
               NS = NS - MOD( NS, 2 )
*
*              ==== If there have been no deflations
*              .    in a multiple of KEXSH iterations,
*              .    then try exceptional shifts.
*              .    Otherwise use shifts provided by
*              .    CLAQR2 above or from the eigenvalues
*              .    of a trailing principal submatrix. ====
*
               IF( MOD( NDFL, KEXSH ).EQ.0 ) THEN
                  KS = KBOT - NS + 1
                  DO 30 I = KBOT, KS + 1, -2
                     W( I ) = H( I, I ) + WILK1*CABS1( H( I, I-1 ) )
                     W( I-1 ) = W( I )
   30             CONTINUE
               ELSE
*
*                 ==== Got NS/2 or fewer shifts? Use CLAHQR
*                 .    on a trailing principal submatrix to
*                 .    get more. (Since NS.LE.NSMAX.LE.(N-3)/6,
*                 .    there is enough space below the subdiagonal
*                 .    to fit an NS-by-NS scratch array.) ====
*
                  IF( KBOT-KS+1.LE.NS / 2 ) THEN
                     KS = KBOT - NS + 1
                     KT = N - NS + 1
                     CALL CLACPY( 'A', NS, NS, H( KS, KS ), LDH,
     $                            H( KT, 1 ), LDH )
                     CALL CLAHQR( .false., .false., NS, 1, NS,
     $                            H( KT, 1 ), LDH, W( KS ), 1, 1, ZDUM,
     $                            1, INF )
                     KS = KS + INF
*
*                    ==== In case of a rare QR failure use
*                    .    eigenvalues of the trailing 2-by-2
*                    .    principal submatrix.  Scale to avoid
*                    .    overflows, underflows and subnormals.
*                    .    (The scale factor S can not be zero,
*                    .    because H(KBOT,KBOT-1) is nonzero.) ====
*
                     IF( KS.GE.KBOT ) THEN
                        S = CABS1( H( KBOT-1, KBOT-1 ) ) +
     $                      CABS1( H( KBOT, KBOT-1 ) ) +
     $                      CABS1( H( KBOT-1, KBOT ) ) +
     $                      CABS1( H( KBOT, KBOT ) )
                        AA = H( KBOT-1, KBOT-1 ) / S
                        CC = H( KBOT, KBOT-1 ) / S
                        BB = H( KBOT-1, KBOT ) / S
                        DD = H( KBOT, KBOT ) / S
                        TR2 = ( AA+DD ) / TWO
                        DET = ( AA-TR2 )*( DD-TR2 ) - BB*CC
                        RTDISC = SQRT( -DET )
                        W( KBOT-1 ) = ( TR2+RTDISC )*S
                        W( KBOT ) = ( TR2-RTDISC )*S
*
                        KS = KBOT - 1
                     END IF
                  END IF
*
                  IF( KBOT-KS+1.GT.NS ) THEN
*
*                    ==== Sort the shifts (Helps a little) ====
*
                     SORTED = .false.
                     DO 50 K = KBOT, KS + 1, -1
                        IF( SORTED )
     $                     GO TO 60
                        SORTED = .true.
                        DO 40 I = KS, K - 1
                           IF( CABS1( W( I ) ).LT.CABS1( W( I+1 ) ) )
     $                          THEN
                              SORTED = .false.
                              SWAP = W( I )
                              W( I ) = W( I+1 )
                              W( I+1 ) = SWAP
                           END IF
   40                   CONTINUE
   50                CONTINUE
   60                CONTINUE
                  END IF
               END IF
*
*              ==== If there are only two shifts, then use
*              .    only one.  ====
*
               IF( KBOT-KS+1.EQ.2 ) THEN
                  IF( CABS1( W( KBOT )-H( KBOT, KBOT ) ).LT.
     $                CABS1( W( KBOT-1 )-H( KBOT, KBOT ) ) ) THEN
                     W( KBOT-1 ) = W( KBOT )
                  ELSE
                     W( KBOT ) = W( KBOT-1 )
                  END IF
               END IF
*
*              ==== Use up to NS of the the smallest magnitude
*              .    shifts.  If there aren't NS shifts available,
*              .    then use them all, possibly dropping one to
*              .    make the number of shifts even. ====
*
               NS = MIN( NS, KBOT-KS+1 )
               NS = NS - MOD( NS, 2 )
               KS = KBOT - NS + 1
*
*              ==== Small-bulge multi-shift QR sweep:
*              .    split workspace under the subdiagonal into
*              .    - a KDU-by-KDU work array U in the lower
*              .      left-hand-corner,
*              .    - a KDU-by-at-least-KDU-but-more-is-better
*              .      (KDU-by-NHo) horizontal work array WH along
*              .      the bottom edge,
*              .    - and an at-least-KDU-but-more-is-better-by-KDU
*              .      (NVE-by-KDU) vertical work WV arrow along
*              .      the left-hand-edge. ====
*
               KDU = 2*NS
               KU = N - KDU + 1
               KWH = KDU + 1
               NHO = ( N-KDU+1-4 ) - ( KDU+1 ) + 1
               KWV = KDU + 4
               NVE = N - KDU - KWV + 1
*
*              ==== Small-bulge multi-shift QR sweep ====
*
               CALL CLAQR5( WANTT, WANTZ, KACC22, N, KTOP, KBOT, NS,
     $                      W( KS ), H, LDH, ILOZ, IHIZ, Z, LDZ, WORK,
     $                      3, H( KU, 1 ), LDH, NVE, H( KWV, 1 ), LDH,
     $                      NHO, H( KU, KWH ), LDH )
            END IF
*
*           ==== Note progress (or the lack of it). ====
*
            IF( LD.GT.0 ) THEN
               NDFL = 1
            ELSE
               NDFL = NDFL + 1
            END IF
*
*           ==== End of main loop ====
   70    CONTINUE
*
*        ==== Iteration limit exceeded.  Set INFO to show where
*        .    the problem occurred and exit. ====
*
         INFO = KBOT
   80    CONTINUE
      END IF
*
*     ==== Return the optimal value of LWORK. ====
*
      WORK( 1 ) = CMPLX( LWKOPT, 0 )
*
*     ==== End of CLAQR4 ====
*
      END
 |