| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 
 | *> \brief \b CPFTRI
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPFTRI + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpftri.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpftri.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpftri.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CPFTRI( TRANSR, UPLO, N, A, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANSR, UPLO
*       INTEGER            INFO, N
*       .. Array Arguments ..
*       COMPLEX            A( 0: * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CPFTRI computes the inverse of a complex Hermitian positive definite
*> matrix A using the Cholesky factorization A = U**H*U or A = L*L**H
*> computed by CPFTRF.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANSR
*> \verbatim
*>          TRANSR is CHARACTER*1
*>          = 'N':  The Normal TRANSR of RFP A is stored;
*>          = 'C':  The Conjugate-transpose TRANSR of RFP A is stored.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX array, dimension ( N*(N+1)/2 );
*>          On entry, the Hermitian matrix A in RFP format. RFP format is
*>          described by TRANSR, UPLO, and N as follows: If TRANSR = 'N'
*>          then RFP A is (0:N,0:k-1) when N is even; k=N/2. RFP A is
*>          (0:N-1,0:k) when N is odd; k=N/2. IF TRANSR = 'C' then RFP is
*>          the Conjugate-transpose of RFP A as defined when
*>          TRANSR = 'N'. The contents of RFP A are defined by UPLO as
*>          follows: If UPLO = 'U' the RFP A contains the nt elements of
*>          upper packed A. If UPLO = 'L' the RFP A contains the elements
*>          of lower packed A. The LDA of RFP A is (N+1)/2 when TRANSR =
*>          'C'. When TRANSR is 'N' the LDA is N+1 when N is even and N
*>          is odd. See the Note below for more details.
*>
*>          On exit, the Hermitian inverse of the original matrix, in the
*>          same storage format.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*>          > 0:  if INFO = i, the (i,i) element of the factor U or L is
*>                zero, and the inverse could not be computed.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complexOTHERcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  We first consider Standard Packed Format when N is even.
*>  We give an example where N = 6.
*>
*>      AP is Upper             AP is Lower
*>
*>   00 01 02 03 04 05       00
*>      11 12 13 14 15       10 11
*>         22 23 24 25       20 21 22
*>            33 34 35       30 31 32 33
*>               44 45       40 41 42 43 44
*>                  55       50 51 52 53 54 55
*>
*>
*>  Let TRANSR = 'N'. RFP holds AP as follows:
*>  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*>  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*>  conjugate-transpose of the first three columns of AP upper.
*>  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*>  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*>  conjugate-transpose of the last three columns of AP lower.
*>  To denote conjugate we place -- above the element. This covers the
*>  case N even and TRANSR = 'N'.
*>
*>         RFP A                   RFP A
*>
*>                                -- -- --
*>        03 04 05                33 43 53
*>                                   -- --
*>        13 14 15                00 44 54
*>                                      --
*>        23 24 25                10 11 55
*>
*>        33 34 35                20 21 22
*>        --
*>        00 44 45                30 31 32
*>        -- --
*>        01 11 55                40 41 42
*>        -- -- --
*>        02 12 22                50 51 52
*>
*>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*>  transpose of RFP A above. One therefore gets:
*>
*>
*>           RFP A                   RFP A
*>
*>     -- -- -- --                -- -- -- -- -- --
*>     03 13 23 33 00 01 02    33 00 10 20 30 40 50
*>     -- -- -- -- --                -- -- -- -- --
*>     04 14 24 34 44 11 12    43 44 11 21 31 41 51
*>     -- -- -- -- -- --                -- -- -- --
*>     05 15 25 35 45 55 22    53 54 55 22 32 42 52
*>
*>
*>  We next  consider Standard Packed Format when N is odd.
*>  We give an example where N = 5.
*>
*>     AP is Upper                 AP is Lower
*>
*>   00 01 02 03 04              00
*>      11 12 13 14              10 11
*>         22 23 24              20 21 22
*>            33 34              30 31 32 33
*>               44              40 41 42 43 44
*>
*>
*>  Let TRANSR = 'N'. RFP holds AP as follows:
*>  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*>  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*>  conjugate-transpose of the first two   columns of AP upper.
*>  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*>  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*>  conjugate-transpose of the last two   columns of AP lower.
*>  To denote conjugate we place -- above the element. This covers the
*>  case N odd  and TRANSR = 'N'.
*>
*>         RFP A                   RFP A
*>
*>                                   -- --
*>        02 03 04                00 33 43
*>                                      --
*>        12 13 14                10 11 44
*>
*>        22 23 24                20 21 22
*>        --
*>        00 33 34                30 31 32
*>        -- --
*>        01 11 44                40 41 42
*>
*>  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*>  transpose of RFP A above. One therefore gets:
*>
*>
*>           RFP A                   RFP A
*>
*>     -- -- --                   -- -- -- -- -- --
*>     02 12 22 00 01             00 10 20 30 40 50
*>     -- -- -- --                   -- -- -- -- --
*>     03 13 23 33 11             33 11 21 31 41 51
*>     -- -- -- -- --                   -- -- -- --
*>     04 14 24 34 44             43 44 22 32 42 52
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CPFTRI( TRANSR, UPLO, N, A, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSR, UPLO
      INTEGER            INFO, N
*     .. Array Arguments ..
      COMPLEX            A( 0: * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE
      COMPLEX            CONE
      PARAMETER          ( ONE = 1.0E+0, CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, NISODD, NORMALTRANSR
      INTEGER            N1, N2, K
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA, CTFTRI, CLAUUM, CTRMM, CHERK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NORMALTRANSR = LSAME( TRANSR, 'N' )
      LOWER = LSAME( UPLO, 'L' )
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPFTRI', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Invert the triangular Cholesky factor U or L.
*
      CALL CTFTRI( TRANSR, UPLO, 'N', N, A, INFO )
      IF( INFO.GT.0 )
     $   RETURN
*
*     If N is odd, set NISODD = .TRUE.
*     If N is even, set K = N/2 and NISODD = .FALSE.
*
      IF( MOD( N, 2 ).EQ.0 ) THEN
         K = N / 2
         NISODD = .FALSE.
      ELSE
         NISODD = .TRUE.
      END IF
*
*     Set N1 and N2 depending on LOWER
*
      IF( LOWER ) THEN
         N2 = N / 2
         N1 = N - N2
      ELSE
         N1 = N / 2
         N2 = N - N1
      END IF
*
*     Start execution of triangular matrix multiply: inv(U)*inv(U)^C or
*     inv(L)^C*inv(L). There are eight cases.
*
      IF( NISODD ) THEN
*
*        N is odd
*
         IF( NORMALTRANSR ) THEN
*
*           N is odd and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:N1-1) )
*              T1 -> a(0,0), T2 -> a(0,1), S -> a(N1,0)
*              T1 -> a(0), T2 -> a(n), S -> a(N1)
*
               CALL CLAUUM( 'L', N1, A( 0 ), N, INFO )
               CALL CHERK( 'L', 'C', N1, N2, ONE, A( N1 ), N, ONE,
     $                     A( 0 ), N )
               CALL CTRMM( 'L', 'U', 'N', 'N', N2, N1, CONE, A( N ), N,
     $                     A( N1 ), N )
               CALL CLAUUM( 'U', N2, A( N ), N, INFO )
*
            ELSE
*
*              SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:N2-1)
*              T1 -> a(N1+1,0), T2 -> a(N1,0), S -> a(0,0)
*              T1 -> a(N2), T2 -> a(N1), S -> a(0)
*
               CALL CLAUUM( 'L', N1, A( N2 ), N, INFO )
               CALL CHERK( 'L', 'N', N1, N2, ONE, A( 0 ), N, ONE,
     $                     A( N2 ), N )
               CALL CTRMM( 'R', 'U', 'C', 'N', N1, N2, CONE, A( N1 ), N,
     $                     A( 0 ), N )
               CALL CLAUUM( 'U', N2, A( N1 ), N, INFO )
*
            END IF
*
         ELSE
*
*           N is odd and TRANSR = 'C'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, TRANSPOSE, and N is odd
*              T1 -> a(0), T2 -> a(1), S -> a(0+N1*N1)
*
               CALL CLAUUM( 'U', N1, A( 0 ), N1, INFO )
               CALL CHERK( 'U', 'N', N1, N2, ONE, A( N1*N1 ), N1, ONE,
     $                     A( 0 ), N1 )
               CALL CTRMM( 'R', 'L', 'N', 'N', N1, N2, CONE, A( 1 ), N1,
     $                     A( N1*N1 ), N1 )
               CALL CLAUUM( 'L', N2, A( 1 ), N1, INFO )
*
            ELSE
*
*              SRPA for UPPER, TRANSPOSE, and N is odd
*              T1 -> a(0+N2*N2), T2 -> a(0+N1*N2), S -> a(0)
*
               CALL CLAUUM( 'U', N1, A( N2*N2 ), N2, INFO )
               CALL CHERK( 'U', 'C', N1, N2, ONE, A( 0 ), N2, ONE,
     $                     A( N2*N2 ), N2 )
               CALL CTRMM( 'L', 'L', 'C', 'N', N2, N1, CONE, A( N1*N2 ),
     $                     N2, A( 0 ), N2 )
               CALL CLAUUM( 'L', N2, A( N1*N2 ), N2, INFO )
*
            END IF
*
         END IF
*
      ELSE
*
*        N is even
*
         IF( NORMALTRANSR ) THEN
*
*           N is even and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
*              T1 -> a(1), T2 -> a(0), S -> a(k+1)
*
               CALL CLAUUM( 'L', K, A( 1 ), N+1, INFO )
               CALL CHERK( 'L', 'C', K, K, ONE, A( K+1 ), N+1, ONE,
     $                     A( 1 ), N+1 )
               CALL CTRMM( 'L', 'U', 'N', 'N', K, K, CONE, A( 0 ), N+1,
     $                     A( K+1 ), N+1 )
               CALL CLAUUM( 'U', K, A( 0 ), N+1, INFO )
*
            ELSE
*
*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
*              T1 -> a(k+1), T2 -> a(k), S -> a(0)
*
               CALL CLAUUM( 'L', K, A( K+1 ), N+1, INFO )
               CALL CHERK( 'L', 'N', K, K, ONE, A( 0 ), N+1, ONE,
     $                     A( K+1 ), N+1 )
               CALL CTRMM( 'R', 'U', 'C', 'N', K, K, CONE, A( K ), N+1,
     $                     A( 0 ), N+1 )
               CALL CLAUUM( 'U', K, A( K ), N+1, INFO )
*
            END IF
*
         ELSE
*
*           N is even and TRANSR = 'C'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, TRANSPOSE, and N is even (see paper)
*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1),
*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
*
               CALL CLAUUM( 'U', K, A( K ), K, INFO )
               CALL CHERK( 'U', 'N', K, K, ONE, A( K*( K+1 ) ), K, ONE,
     $                     A( K ), K )
               CALL CTRMM( 'R', 'L', 'N', 'N', K, K, CONE, A( 0 ), K,
     $                     A( K*( K+1 ) ), K )
               CALL CLAUUM( 'L', K, A( 0 ), K, INFO )
*
            ELSE
*
*              SRPA for UPPER, TRANSPOSE, and N is even (see paper)
*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0),
*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
*
               CALL CLAUUM( 'U', K, A( K*( K+1 ) ), K, INFO )
               CALL CHERK( 'U', 'C', K, K, ONE, A( 0 ), K, ONE,
     $                     A( K*( K+1 ) ), K )
               CALL CTRMM( 'L', 'L', 'C', 'N', K, K, CONE, A( K*K ), K,
     $                     A( 0 ), K )
               CALL CLAUUM( 'L', K, A( K*K ), K, INFO )
*
            END IF
*
         END IF
*
      END IF
*
      RETURN
*
*     End of CPFTRI
*
      END
 |