| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 
 | *> \brief \b DLA_LIN_BERR computes a component-wise relative backward error.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLA_LIN_BERR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_lin_berr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_lin_berr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_lin_berr.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLA_LIN_BERR( N, NZ, NRHS, RES, AYB, BERR )
*
*       .. Scalar Arguments ..
*       INTEGER            N, NZ, NRHS
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   AYB( N, NRHS ), BERR( NRHS )
*       DOUBLE PRECISION   RES( N, NRHS )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    DLA_LIN_BERR computes component-wise relative backward error from
*>    the formula
*>        max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
*>    where abs(Z) is the component-wise absolute value of the matrix
*>    or vector Z.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>     The number of linear equations, i.e., the order of the
*>     matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NZ
*> \verbatim
*>          NZ is INTEGER
*>     We add (NZ+1)*SLAMCH( 'Safe minimum' ) to R(i) in the numerator to
*>     guard against spuriously zero residuals. Default value is N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>     The number of right hand sides, i.e., the number of columns
*>     of the matrices AYB, RES, and BERR.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] RES
*> \verbatim
*>          RES is DOUBLE PRECISION array, dimension (N,NRHS)
*>     The residual matrix, i.e., the matrix R in the relative backward
*>     error formula above.
*> \endverbatim
*>
*> \param[in] AYB
*> \verbatim
*>          AYB is DOUBLE PRECISION array, dimension (N, NRHS)
*>     The denominator in the relative backward error formula above, i.e.,
*>     the matrix abs(op(A_s))*abs(Y) + abs(B_s). The matrices A, Y, and B
*>     are from iterative refinement (see dla_gerfsx_extended.f).
*> \endverbatim
*>
*> \param[out] BERR
*> \verbatim
*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
*>     The component-wise relative backward error from the formula above.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup doubleOTHERcomputational
*
*  =====================================================================
      SUBROUTINE DLA_LIN_BERR ( N, NZ, NRHS, RES, AYB, BERR )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            N, NZ, NRHS
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AYB( N, NRHS ), BERR( NRHS )
      DOUBLE PRECISION   RES( N, NRHS )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      DOUBLE PRECISION   TMP
      INTEGER            I, J
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. External Functions ..
      EXTERNAL           DLAMCH
      DOUBLE PRECISION   DLAMCH
      DOUBLE PRECISION   SAFE1
*     ..
*     .. Executable Statements ..
*
*     Adding SAFE1 to the numerator guards against spuriously zero
*     residuals.  A similar safeguard is in the SLA_yyAMV routine used
*     to compute AYB.
*
      SAFE1 = DLAMCH( 'Safe minimum' )
      SAFE1 = (NZ+1)*SAFE1
      DO J = 1, NRHS
         BERR(J) = 0.0D+0
         DO I = 1, N
            IF (AYB(I,J) .NE. 0.0D+0) THEN
               TMP = (SAFE1+ABS(RES(I,J)))/AYB(I,J)
               BERR(J) = MAX( BERR(J), TMP )
            END IF
*
*     If AYB is exactly 0.0 (and if computed by SLA_yyAMV), then we know
*     the true residual also must be exactly 0.0.
*
         END DO
      END DO
*
*     End of DLA_LIN_BERR
*
      END
 |