| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 
 | *> \brief \b DSB2ST_KERNELS
*
*  @generated from zhb2st_kernels.f, fortran z -> d, Wed Dec  7 08:22:39 2016
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DSB2ST_KERNELS + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsb2st_kernels.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsb2st_kernels.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsb2st_kernels.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE  DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
*                                   ST, ED, SWEEP, N, NB, IB,
*                                   A, LDA, V, TAU, LDVT, WORK)
*
*       IMPLICIT NONE
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       LOGICAL            WANTZ
*       INTEGER            TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), V( * ),
*                          TAU( * ), WORK( * )
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DSB2ST_KERNELS is an internal routine used by the DSYTRD_SB2ST
*> subroutine.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*> \endverbatim
*>
*> \param[in] WANTZ
*> \verbatim
*>          WANTZ is LOGICAL which indicate if Eigenvalue are requested or both
*>          Eigenvalue/Eigenvectors.
*> \endverbatim
*>
*> \param[in] TTYPE
*> \verbatim
*>          TTYPE is INTEGER
*> \endverbatim
*>
*> \param[in] ST
*> \verbatim
*>          ST is INTEGER
*>          internal parameter for indices.
*> \endverbatim
*>
*> \param[in] ED
*> \verbatim
*>          ED is INTEGER
*>          internal parameter for indices.
*> \endverbatim
*>
*> \param[in] SWEEP
*> \verbatim
*>          SWEEP is INTEGER
*>          internal parameter for indices.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER. The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NB
*> \verbatim
*>          NB is INTEGER. The size of the band.
*> \endverbatim
*>
*> \param[in] IB
*> \verbatim
*>          IB is INTEGER.
*> \endverbatim
*>
*> \param[in, out] A
*> \verbatim
*>          A is DOUBLE PRECISION array. A pointer to the matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER. The leading dimension of the matrix A.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*>          V is DOUBLE PRECISION array, dimension 2*n if eigenvalues only are
*>          requested or to be queried for vectors.
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is DOUBLE PRECISION array, dimension (2*n).
*>          The scalar factors of the Householder reflectors are stored
*>          in this array.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*>          LDVT is INTEGER.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array. Workspace of size nb.
*> \endverbatim
*>
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  Implemented by Azzam Haidar.
*>
*>  All details are available on technical report, SC11, SC13 papers.
*>
*>  Azzam Haidar, Hatem Ltaief, and Jack Dongarra.
*>  Parallel reduction to condensed forms for symmetric eigenvalue problems
*>  using aggregated fine-grained and memory-aware kernels. In Proceedings
*>  of 2011 International Conference for High Performance Computing,
*>  Networking, Storage and Analysis (SC '11), New York, NY, USA,
*>  Article 8 , 11 pages.
*>  http://doi.acm.org/10.1145/2063384.2063394
*>
*>  A. Haidar, J. Kurzak, P. Luszczek, 2013.
*>  An improved parallel singular value algorithm and its implementation
*>  for multicore hardware, In Proceedings of 2013 International Conference
*>  for High Performance Computing, Networking, Storage and Analysis (SC '13).
*>  Denver, Colorado, USA, 2013.
*>  Article 90, 12 pages.
*>  http://doi.acm.org/10.1145/2503210.2503292
*>
*>  A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra.
*>  A novel hybrid CPU-GPU generalized eigensolver for electronic structure
*>  calculations based on fine-grained memory aware tasks.
*>  International Journal of High Performance Computing Applications.
*>  Volume 28 Issue 2, Pages 196-209, May 2014.
*>  http://hpc.sagepub.com/content/28/2/196
*>
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE  DSB2ST_KERNELS( UPLO, WANTZ, TTYPE,
     $                            ST, ED, SWEEP, N, NB, IB,
     $                            A, LDA, V, TAU, LDVT, WORK)
*
      IMPLICIT NONE
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      LOGICAL            WANTZ
      INTEGER            TTYPE, ST, ED, SWEEP, N, NB, IB, LDA, LDVT
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), V( * ),
     $                   TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0,
     $                   ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            I, J1, J2, LM, LN, VPOS, TAUPOS,
     $                   DPOS, OFDPOS, AJETER
      DOUBLE PRECISION   CTMP
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLARFG, DLARFX, DLARFY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MOD
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     ..
*     .. Executable Statements ..
*
      AJETER = IB + LDVT
      UPPER = LSAME( UPLO, 'U' )
      IF( UPPER ) THEN
          DPOS    = 2 * NB + 1
          OFDPOS  = 2 * NB
      ELSE
          DPOS    = 1
          OFDPOS  = 2
      ENDIF
*
*     Upper case
*
      IF( UPPER ) THEN
*
          IF( WANTZ ) THEN
              VPOS   = MOD( SWEEP-1, 2 ) * N + ST
              TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
          ELSE
              VPOS   = MOD( SWEEP-1, 2 ) * N + ST
              TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
          ENDIF
*
          IF( TTYPE.EQ.1 ) THEN
              LM = ED - ST + 1
*
              V( VPOS ) = ONE
              DO 10 I = 1, LM-1
                  V( VPOS+I )         = ( A( OFDPOS-I, ST+I ) )
                  A( OFDPOS-I, ST+I ) = ZERO
   10         CONTINUE
              CTMP = ( A( OFDPOS, ST ) )
              CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1,
     $                                       TAU( TAUPOS ) )
              A( OFDPOS, ST ) = CTMP
*
              LM = ED - ST + 1
              CALL DLARFY( UPLO, LM, V( VPOS ), 1,
     $                     ( TAU( TAUPOS ) ),
     $                     A( DPOS, ST ), LDA-1, WORK)
          ENDIF
*
          IF( TTYPE.EQ.3 ) THEN
*
              LM = ED - ST + 1
              CALL DLARFY( UPLO, LM, V( VPOS ), 1,
     $                     ( TAU( TAUPOS ) ),
     $                     A( DPOS, ST ), LDA-1, WORK)
          ENDIF
*
          IF( TTYPE.EQ.2 ) THEN
              J1 = ED+1
              J2 = MIN( ED+NB, N )
              LN = ED-ST+1
              LM = J2-J1+1
              IF( LM.GT.0) THEN
                  CALL DLARFX( 'Left', LN, LM, V( VPOS ),
     $                         ( TAU( TAUPOS ) ),
     $                         A( DPOS-NB, J1 ), LDA-1, WORK)
*
                  IF( WANTZ ) THEN
                      VPOS   = MOD( SWEEP-1, 2 ) * N + J1
                      TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
                  ELSE
                      VPOS   = MOD( SWEEP-1, 2 ) * N + J1
                      TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
                  ENDIF
*
                  V( VPOS ) = ONE
                  DO 30 I = 1, LM-1
                      V( VPOS+I )          =
     $                                    ( A( DPOS-NB-I, J1+I ) )
                      A( DPOS-NB-I, J1+I ) = ZERO
   30             CONTINUE
                  CTMP = ( A( DPOS-NB, J1 ) )
                  CALL DLARFG( LM, CTMP, V( VPOS+1 ), 1, TAU( TAUPOS ) )
                  A( DPOS-NB, J1 ) = CTMP
*
                  CALL DLARFX( 'Right', LN-1, LM, V( VPOS ),
     $                         TAU( TAUPOS ),
     $                         A( DPOS-NB+1, J1 ), LDA-1, WORK)
              ENDIF
          ENDIF
*
*     Lower case
*
      ELSE
*
          IF( WANTZ ) THEN
              VPOS   = MOD( SWEEP-1, 2 ) * N + ST
              TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
          ELSE
              VPOS   = MOD( SWEEP-1, 2 ) * N + ST
              TAUPOS = MOD( SWEEP-1, 2 ) * N + ST
          ENDIF
*
          IF( TTYPE.EQ.1 ) THEN
              LM = ED - ST + 1
*
              V( VPOS ) = ONE
              DO 20 I = 1, LM-1
                  V( VPOS+I )         = A( OFDPOS+I, ST-1 )
                  A( OFDPOS+I, ST-1 ) = ZERO
   20         CONTINUE
              CALL DLARFG( LM, A( OFDPOS, ST-1 ), V( VPOS+1 ), 1,
     $                                       TAU( TAUPOS ) )
*
              LM = ED - ST + 1
*
              CALL DLARFY( UPLO, LM, V( VPOS ), 1,
     $                     ( TAU( TAUPOS ) ),
     $                     A( DPOS, ST ), LDA-1, WORK)
          ENDIF
*
          IF( TTYPE.EQ.3 ) THEN
              LM = ED - ST + 1
*
              CALL DLARFY( UPLO, LM, V( VPOS ), 1,
     $                     ( TAU( TAUPOS ) ),
     $                     A( DPOS, ST ), LDA-1, WORK)
          ENDIF
*
          IF( TTYPE.EQ.2 ) THEN
              J1 = ED+1
              J2 = MIN( ED+NB, N )
              LN = ED-ST+1
              LM = J2-J1+1
*
              IF( LM.GT.0) THEN
                  CALL DLARFX( 'Right', LM, LN, V( VPOS ),
     $                         TAU( TAUPOS ), A( DPOS+NB, ST ),
     $                         LDA-1, WORK)
*
                  IF( WANTZ ) THEN
                      VPOS   = MOD( SWEEP-1, 2 ) * N + J1
                      TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
                  ELSE
                      VPOS   = MOD( SWEEP-1, 2 ) * N + J1
                      TAUPOS = MOD( SWEEP-1, 2 ) * N + J1
                  ENDIF
*
                  V( VPOS ) = ONE
                  DO 40 I = 1, LM-1
                      V( VPOS+I )        = A( DPOS+NB+I, ST )
                      A( DPOS+NB+I, ST ) = ZERO
   40             CONTINUE
                  CALL DLARFG( LM, A( DPOS+NB, ST ), V( VPOS+1 ), 1,
     $                                        TAU( TAUPOS ) )
*
                  CALL DLARFX( 'Left', LM, LN-1, V( VPOS ),
     $                         ( TAU( TAUPOS ) ),
     $                         A( DPOS+NB-1, ST+1 ), LDA-1, WORK)
              ENDIF
          ENDIF
      ENDIF
*
      RETURN
*
*     End of DSB2ST_KERNELS
*
      END
 |