| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 
 | *> \brief <b> SGEES computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors for GE matrices</b>
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGEES + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgees.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgees.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgees.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
*                         VS, LDVS, WORK, LWORK, BWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          JOBVS, SORT
*       INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
*       ..
*       .. Array Arguments ..
*       LOGICAL            BWORK( * )
*       REAL               A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
*      $                   WR( * )
*       ..
*       .. Function Arguments ..
*       LOGICAL            SELECT
*       EXTERNAL           SELECT
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGEES computes for an N-by-N real nonsymmetric matrix A, the
*> eigenvalues, the real Schur form T, and, optionally, the matrix of
*> Schur vectors Z.  This gives the Schur factorization A = Z*T*(Z**T).
*>
*> Optionally, it also orders the eigenvalues on the diagonal of the
*> real Schur form so that selected eigenvalues are at the top left.
*> The leading columns of Z then form an orthonormal basis for the
*> invariant subspace corresponding to the selected eigenvalues.
*>
*> A matrix is in real Schur form if it is upper quasi-triangular with
*> 1-by-1 and 2-by-2 blocks. 2-by-2 blocks will be standardized in the
*> form
*>         [  a  b  ]
*>         [  c  a  ]
*>
*> where b*c < 0. The eigenvalues of such a block are a +- sqrt(bc).
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOBVS
*> \verbatim
*>          JOBVS is CHARACTER*1
*>          = 'N': Schur vectors are not computed;
*>          = 'V': Schur vectors are computed.
*> \endverbatim
*>
*> \param[in] SORT
*> \verbatim
*>          SORT is CHARACTER*1
*>          Specifies whether or not to order the eigenvalues on the
*>          diagonal of the Schur form.
*>          = 'N': Eigenvalues are not ordered;
*>          = 'S': Eigenvalues are ordered (see SELECT).
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*>          SELECT is a LOGICAL FUNCTION of two REAL arguments
*>          SELECT must be declared EXTERNAL in the calling subroutine.
*>          If SORT = 'S', SELECT is used to select eigenvalues to sort
*>          to the top left of the Schur form.
*>          If SORT = 'N', SELECT is not referenced.
*>          An eigenvalue WR(j)+sqrt(-1)*WI(j) is selected if
*>          SELECT(WR(j),WI(j)) is true; i.e., if either one of a complex
*>          conjugate pair of eigenvalues is selected, then both complex
*>          eigenvalues are selected.
*>          Note that a selected complex eigenvalue may no longer
*>          satisfy SELECT(WR(j),WI(j)) = .TRUE. after ordering, since
*>          ordering may change the value of complex eigenvalues
*>          (especially if the eigenvalue is ill-conditioned); in this
*>          case INFO is set to N+2 (see INFO below).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the N-by-N matrix A.
*>          On exit, A has been overwritten by its real Schur form T.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] SDIM
*> \verbatim
*>          SDIM is INTEGER
*>          If SORT = 'N', SDIM = 0.
*>          If SORT = 'S', SDIM = number of eigenvalues (after sorting)
*>                         for which SELECT is true. (Complex conjugate
*>                         pairs for which SELECT is true for either
*>                         eigenvalue count as 2.)
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*>          WR is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] WI
*> \verbatim
*>          WI is REAL array, dimension (N)
*>          WR and WI contain the real and imaginary parts,
*>          respectively, of the computed eigenvalues in the same order
*>          that they appear on the diagonal of the output Schur form T.
*>          Complex conjugate pairs of eigenvalues will appear
*>          consecutively with the eigenvalue having the positive
*>          imaginary part first.
*> \endverbatim
*>
*> \param[out] VS
*> \verbatim
*>          VS is REAL array, dimension (LDVS,N)
*>          If JOBVS = 'V', VS contains the orthogonal matrix Z of Schur
*>          vectors.
*>          If JOBVS = 'N', VS is not referenced.
*> \endverbatim
*>
*> \param[in] LDVS
*> \verbatim
*>          LDVS is INTEGER
*>          The leading dimension of the array VS.  LDVS >= 1; if
*>          JOBVS = 'V', LDVS >= N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) contains the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.  LWORK >= max(1,3*N).
*>          For good performance, LWORK must generally be larger.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] BWORK
*> \verbatim
*>          BWORK is LOGICAL array, dimension (N)
*>          Not referenced if SORT = 'N'.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value.
*>          > 0: if INFO = i, and i is
*>             <= N: the QR algorithm failed to compute all the
*>                   eigenvalues; elements 1:ILO-1 and i+1:N of WR and WI
*>                   contain those eigenvalues which have converged; if
*>                   JOBVS = 'V', VS contains the matrix which reduces A
*>                   to its partially converged Schur form.
*>             = N+1: the eigenvalues could not be reordered because some
*>                   eigenvalues were too close to separate (the problem
*>                   is very ill-conditioned);
*>             = N+2: after reordering, roundoff changed values of some
*>                   complex eigenvalues so that leading eigenvalues in
*>                   the Schur form no longer satisfy SELECT=.TRUE.  This
*>                   could also be caused by underflow due to scaling.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realGEeigen
*
*  =====================================================================
      SUBROUTINE SGEES( JOBVS, SORT, SELECT, N, A, LDA, SDIM, WR, WI,
     $                  VS, LDVS, WORK, LWORK, BWORK, INFO )
*
*  -- LAPACK driver routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          JOBVS, SORT
      INTEGER            INFO, LDA, LDVS, LWORK, N, SDIM
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * )
      REAL               A( LDA, * ), VS( LDVS, * ), WI( * ), WORK( * ),
     $                   WR( * )
*     ..
*     .. Function Arguments ..
      LOGICAL            SELECT
      EXTERNAL           SELECT
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            CURSL, LASTSL, LQUERY, LST2SL, SCALEA, WANTST,
     $                   WANTVS
      INTEGER            HSWORK, I, I1, I2, IBAL, ICOND, IERR, IEVAL,
     $                   IHI, ILO, INXT, IP, ITAU, IWRK, MAXWRK, MINWRK
      REAL               ANRM, BIGNUM, CSCALE, EPS, S, SEP, SMLNUM
*     ..
*     .. Local Arrays ..
      INTEGER            IDUM( 1 )
      REAL               DUM( 1 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEBAK, SGEBAL, SGEHRD, SHSEQR, SLABAD,
     $                   SLACPY, SLASCL, SORGHR, SSWAP, STRSEN, XERBLA
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      REAL               SLAMCH, SLANGE
      EXTERNAL           LSAME, ILAENV, SLAMCH, SLANGE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
      WANTVS = LSAME( JOBVS, 'V' )
      WANTST = LSAME( SORT, 'S' )
      IF( ( .NOT.WANTVS ) .AND. ( .NOT.LSAME( JOBVS, 'N' ) ) ) THEN
         INFO = -1
      ELSE IF( ( .NOT.WANTST ) .AND. ( .NOT.LSAME( SORT, 'N' ) ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDVS.LT.1 .OR. ( WANTVS .AND. LDVS.LT.N ) ) THEN
         INFO = -11
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.
*       HSWORK refers to the workspace preferred by SHSEQR, as
*       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
*       the worst case.)
*
      IF( INFO.EQ.0 ) THEN
         IF( N.EQ.0 ) THEN
            MINWRK = 1
            MAXWRK = 1
         ELSE
            MAXWRK = 2*N + N*ILAENV( 1, 'SGEHRD', ' ', N, 1, N, 0 )
            MINWRK = 3*N
*
            CALL SHSEQR( 'S', JOBVS, N, 1, N, A, LDA, WR, WI, VS, LDVS,
     $             WORK, -1, IEVAL )
            HSWORK = INT( WORK( 1 ) )
*
            IF( .NOT.WANTVS ) THEN
               MAXWRK = MAX( MAXWRK, N + HSWORK )
            ELSE
               MAXWRK = MAX( MAXWRK, 2*N + ( N - 1 )*ILAENV( 1,
     $                       'SORGHR', ' ', N, 1, N, -1 ) )
               MAXWRK = MAX( MAXWRK, N + HSWORK )
            END IF
         END IF
         WORK( 1 ) = MAXWRK
*
         IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
            INFO = -13
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SGEES ', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 ) THEN
         SDIM = 0
         RETURN
      END IF
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' )
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      SMLNUM = SQRT( SMLNUM ) / EPS
      BIGNUM = ONE / SMLNUM
*
*     Scale A if max element outside range [SMLNUM,BIGNUM]
*
      ANRM = SLANGE( 'M', N, N, A, LDA, DUM )
      SCALEA = .FALSE.
      IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = SMLNUM
      ELSE IF( ANRM.GT.BIGNUM ) THEN
         SCALEA = .TRUE.
         CSCALE = BIGNUM
      END IF
      IF( SCALEA )
     $   CALL SLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
*
*     Permute the matrix to make it more nearly triangular
*     (Workspace: need N)
*
      IBAL = 1
      CALL SGEBAL( 'P', N, A, LDA, ILO, IHI, WORK( IBAL ), IERR )
*
*     Reduce to upper Hessenberg form
*     (Workspace: need 3*N, prefer 2*N+N*NB)
*
      ITAU = N + IBAL
      IWRK = N + ITAU
      CALL SGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
     $             LWORK-IWRK+1, IERR )
*
      IF( WANTVS ) THEN
*
*        Copy Householder vectors to VS
*
         CALL SLACPY( 'L', N, N, A, LDA, VS, LDVS )
*
*        Generate orthogonal matrix in VS
*        (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB)
*
         CALL SORGHR( N, ILO, IHI, VS, LDVS, WORK( ITAU ), WORK( IWRK ),
     $                LWORK-IWRK+1, IERR )
      END IF
*
      SDIM = 0
*
*     Perform QR iteration, accumulating Schur vectors in VS if desired
*     (Workspace: need N+1, prefer N+HSWORK (see comments) )
*
      IWRK = ITAU
      CALL SHSEQR( 'S', JOBVS, N, ILO, IHI, A, LDA, WR, WI, VS, LDVS,
     $             WORK( IWRK ), LWORK-IWRK+1, IEVAL )
      IF( IEVAL.GT.0 )
     $   INFO = IEVAL
*
*     Sort eigenvalues if desired
*
      IF( WANTST .AND. INFO.EQ.0 ) THEN
         IF( SCALEA ) THEN
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WR, N, IERR )
            CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N, 1, WI, N, IERR )
         END IF
         DO 10 I = 1, N
            BWORK( I ) = SELECT( WR( I ), WI( I ) )
   10    CONTINUE
*
*        Reorder eigenvalues and transform Schur vectors
*        (Workspace: none needed)
*
         CALL STRSEN( 'N', JOBVS, BWORK, N, A, LDA, VS, LDVS, WR, WI,
     $                SDIM, S, SEP, WORK( IWRK ), LWORK-IWRK+1, IDUM, 1,
     $                ICOND )
         IF( ICOND.GT.0 )
     $      INFO = N + ICOND
      END IF
*
      IF( WANTVS ) THEN
*
*        Undo balancing
*        (Workspace: need N)
*
         CALL SGEBAK( 'P', 'R', N, ILO, IHI, WORK( IBAL ), N, VS, LDVS,
     $                IERR )
      END IF
*
      IF( SCALEA ) THEN
*
*        Undo scaling for the Schur form of A
*
         CALL SLASCL( 'H', 0, 0, CSCALE, ANRM, N, N, A, LDA, IERR )
         CALL SCOPY( N, A, LDA+1, WR, 1 )
         IF( CSCALE.EQ.SMLNUM ) THEN
*
*           If scaling back towards underflow, adjust WI if an
*           offdiagonal element of a 2-by-2 block in the Schur form
*           underflows.
*
            IF( IEVAL.GT.0 ) THEN
               I1 = IEVAL + 1
               I2 = IHI - 1
               CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, WI,
     $                      MAX( ILO-1, 1 ), IERR )
            ELSE IF( WANTST ) THEN
               I1 = 1
               I2 = N - 1
            ELSE
               I1 = ILO
               I2 = IHI - 1
            END IF
            INXT = I1 - 1
            DO 20 I = I1, I2
               IF( I.LT.INXT )
     $            GO TO 20
               IF( WI( I ).EQ.ZERO ) THEN
                  INXT = I + 1
               ELSE
                  IF( A( I+1, I ).EQ.ZERO ) THEN
                     WI( I ) = ZERO
                     WI( I+1 ) = ZERO
                  ELSE IF( A( I+1, I ).NE.ZERO .AND. A( I, I+1 ).EQ.
     $                     ZERO ) THEN
                     WI( I ) = ZERO
                     WI( I+1 ) = ZERO
                     IF( I.GT.1 )
     $                  CALL SSWAP( I-1, A( 1, I ), 1, A( 1, I+1 ), 1 )
                     IF( N.GT.I+1 )
     $                  CALL SSWAP( N-I-1, A( I, I+2 ), LDA,
     $                              A( I+1, I+2 ), LDA )
                     IF( WANTVS ) THEN
                        CALL SSWAP( N, VS( 1, I ), 1, VS( 1, I+1 ), 1 )
                     END IF
                     A( I, I+1 ) = A( I+1, I )
                     A( I+1, I ) = ZERO
                  END IF
                  INXT = I + 2
               END IF
   20       CONTINUE
         END IF
*
*        Undo scaling for the imaginary part of the eigenvalues
*
         CALL SLASCL( 'G', 0, 0, CSCALE, ANRM, N-IEVAL, 1,
     $                WI( IEVAL+1 ), MAX( N-IEVAL, 1 ), IERR )
      END IF
*
      IF( WANTST .AND. INFO.EQ.0 ) THEN
*
*        Check if reordering successful
*
         LASTSL = .TRUE.
         LST2SL = .TRUE.
         SDIM = 0
         IP = 0
         DO 30 I = 1, N
            CURSL = SELECT( WR( I ), WI( I ) )
            IF( WI( I ).EQ.ZERO ) THEN
               IF( CURSL )
     $            SDIM = SDIM + 1
               IP = 0
               IF( CURSL .AND. .NOT.LASTSL )
     $            INFO = N + 2
            ELSE
               IF( IP.EQ.1 ) THEN
*
*                 Last eigenvalue of conjugate pair
*
                  CURSL = CURSL .OR. LASTSL
                  LASTSL = CURSL
                  IF( CURSL )
     $               SDIM = SDIM + 2
                  IP = -1
                  IF( CURSL .AND. .NOT.LST2SL )
     $               INFO = N + 2
               ELSE
*
*                 First eigenvalue of conjugate pair
*
                  IP = 1
               END IF
            END IF
            LST2SL = LASTSL
            LASTSL = CURSL
   30    CONTINUE
      END IF
*
      WORK( 1 ) = MAXWRK
      RETURN
*
*     End of SGEES
*
      END
 |