| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 
 | *> \brief \b SGTTRF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGTTRF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgttrf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgttrf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgttrf.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       REAL               D( * ), DL( * ), DU( * ), DU2( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SGTTRF computes an LU factorization of a real tridiagonal matrix A
*> using elimination with partial pivoting and row interchanges.
*>
*> The factorization has the form
*>    A = L * U
*> where L is a product of permutation and unit lower bidiagonal
*> matrices and U is upper triangular with nonzeros in only the main
*> diagonal and first two superdiagonals.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.
*> \endverbatim
*>
*> \param[in,out] DL
*> \verbatim
*>          DL is REAL array, dimension (N-1)
*>          On entry, DL must contain the (n-1) sub-diagonal elements of
*>          A.
*>
*>          On exit, DL is overwritten by the (n-1) multipliers that
*>          define the matrix L from the LU factorization of A.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          On entry, D must contain the diagonal elements of A.
*>
*>          On exit, D is overwritten by the n diagonal elements of the
*>          upper triangular matrix U from the LU factorization of A.
*> \endverbatim
*>
*> \param[in,out] DU
*> \verbatim
*>          DU is REAL array, dimension (N-1)
*>          On entry, DU must contain the (n-1) super-diagonal elements
*>          of A.
*>
*>          On exit, DU is overwritten by the (n-1) elements of the first
*>          super-diagonal of U.
*> \endverbatim
*>
*> \param[out] DU2
*> \verbatim
*>          DU2 is REAL array, dimension (N-2)
*>          On exit, DU2 is overwritten by the (n-2) elements of the
*>          second super-diagonal of U.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices; for 1 <= i <= n, row i of the matrix was
*>          interchanged with row IPIV(i).  IPIV(i) will always be either
*>          i or i+1; IPIV(i) = i indicates a row interchange was not
*>          required.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -k, the k-th argument had an illegal value
*>          > 0:  if INFO = k, U(k,k) is exactly zero. The factorization
*>                has been completed, but the factor U is exactly
*>                singular, and division by zero will occur if it is used
*>                to solve a system of equations.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realGTcomputational
*
*  =====================================================================
      SUBROUTINE SGTTRF( N, DL, D, DU, DU2, IPIV, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      REAL               D( * ), DL( * ), DU( * ), DU2( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO
      PARAMETER          ( ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      REAL               FACT, TEMP
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Executable Statements ..
*
      INFO = 0
      IF( N.LT.0 ) THEN
         INFO = -1
         CALL XERBLA( 'SGTTRF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Initialize IPIV(i) = i and DU2(I) = 0
*
      DO 10 I = 1, N
         IPIV( I ) = I
   10 CONTINUE
      DO 20 I = 1, N - 2
         DU2( I ) = ZERO
   20 CONTINUE
*
      DO 30 I = 1, N - 2
         IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
*           No row interchange required, eliminate DL(I)
*
            IF( D( I ).NE.ZERO ) THEN
               FACT = DL( I ) / D( I )
               DL( I ) = FACT
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
            END IF
         ELSE
*
*           Interchange rows I and I+1, eliminate DL(I)
*
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            DU2( I ) = DU( I+1 )
            DU( I+1 ) = -FACT*DU( I+1 )
            IPIV( I ) = I + 1
         END IF
   30 CONTINUE
      IF( N.GT.1 ) THEN
         I = N - 1
         IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
            IF( D( I ).NE.ZERO ) THEN
               FACT = DL( I ) / D( I )
               DL( I ) = FACT
               D( I+1 ) = D( I+1 ) - FACT*DU( I )
            END IF
         ELSE
            FACT = D( I ) / DL( I )
            D( I ) = DL( I )
            DL( I ) = FACT
            TEMP = DU( I )
            DU( I ) = D( I+1 )
            D( I+1 ) = TEMP - FACT*D( I+1 )
            IPIV( I ) = I + 1
         END IF
      END IF
*
*     Check for a zero on the diagonal of U.
*
      DO 40 I = 1, N
         IF( D( I ).EQ.ZERO ) THEN
            INFO = I
            GO TO 50
         END IF
   40 CONTINUE
   50 CONTINUE
*
      RETURN
*
*     End of SGTTRF
*
      END
 |