| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 
 | *> \brief \b SORGBR
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SORGBR + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorgbr.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorgbr.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorgbr.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          VECT
*       INTEGER            INFO, K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               A( LDA, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SORGBR generates one of the real orthogonal matrices Q or P**T
*> determined by SGEBRD when reducing a real matrix A to bidiagonal
*> form: A = Q * B * P**T.  Q and P**T are defined as products of
*> elementary reflectors H(i) or G(i) respectively.
*>
*> If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q
*> is of order M:
*> if m >= k, Q = H(1) H(2) . . . H(k) and SORGBR returns the first n
*> columns of Q, where m >= n >= k;
*> if m < k, Q = H(1) H(2) . . . H(m-1) and SORGBR returns Q as an
*> M-by-M matrix.
*>
*> If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T
*> is of order N:
*> if k < n, P**T = G(k) . . . G(2) G(1) and SORGBR returns the first m
*> rows of P**T, where n >= m >= k;
*> if k >= n, P**T = G(n-1) . . . G(2) G(1) and SORGBR returns P**T as
*> an N-by-N matrix.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] VECT
*> \verbatim
*>          VECT is CHARACTER*1
*>          Specifies whether the matrix Q or the matrix P**T is
*>          required, as defined in the transformation applied by SGEBRD:
*>          = 'Q':  generate Q;
*>          = 'P':  generate P**T.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix Q or P**T to be returned.
*>          M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix Q or P**T to be returned.
*>          N >= 0.
*>          If VECT = 'Q', M >= N >= min(M,K);
*>          if VECT = 'P', N >= M >= min(N,K).
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          If VECT = 'Q', the number of columns in the original M-by-K
*>          matrix reduced by SGEBRD.
*>          If VECT = 'P', the number of rows in the original K-by-N
*>          matrix reduced by SGEBRD.
*>          K >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is REAL array, dimension (LDA,N)
*>          On entry, the vectors which define the elementary reflectors,
*>          as returned by SGEBRD.
*>          On exit, the M-by-N matrix Q or P**T.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is REAL array, dimension
*>                                (min(M,K)) if VECT = 'Q'
*>                                (min(N,K)) if VECT = 'P'
*>          TAU(i) must contain the scalar factor of the elementary
*>          reflector H(i) or G(i), which determines Q or P**T, as
*>          returned by SGEBRD in its array argument TAUQ or TAUP.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK. LWORK >= max(1,min(M,N)).
*>          For optimum performance LWORK >= min(M,N)*NB, where NB
*>          is the optimal blocksize.
*>
*>          If LWORK = -1, then a workspace query is assumed; the routine
*>          only calculates the optimal size of the WORK array, returns
*>          this value as the first entry of the WORK array, and no error
*>          message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0:  successful exit
*>          < 0:  if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup realGBcomputational
*
*  =====================================================================
      SUBROUTINE SORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          VECT
      INTEGER            INFO, K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, WANTQ
      INTEGER            I, IINFO, J, LWKOPT, MN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           SORGLQ, SORGQR, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Test the input arguments
*
      INFO = 0
      WANTQ = LSAME( VECT, 'Q' )
      MN = MIN( M, N )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.WANTQ .AND. .NOT.LSAME( VECT, 'P' ) ) THEN
         INFO = -1
      ELSE IF( M.LT.0 ) THEN
         INFO = -2
      ELSE IF( N.LT.0 .OR. ( WANTQ .AND. ( N.GT.M .OR. N.LT.MIN( M,
     $         K ) ) ) .OR. ( .NOT.WANTQ .AND. ( M.GT.N .OR. M.LT.
     $         MIN( N, K ) ) ) ) THEN
         INFO = -3
      ELSE IF( K.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
         INFO = -6
      ELSE IF( LWORK.LT.MAX( 1, MN ) .AND. .NOT.LQUERY ) THEN
         INFO = -9
      END IF
*
      IF( INFO.EQ.0 ) THEN
         WORK( 1 ) = 1
         IF( WANTQ ) THEN
            IF( M.GE.K ) THEN
               CALL SORGQR( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
            ELSE
               IF( M.GT.1 ) THEN
                  CALL SORGQR( M-1, M-1, M-1, A, LDA, TAU, WORK, -1,
     $                         IINFO )
               END IF
            END IF
         ELSE
            IF( K.LT.N ) THEN
               CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, -1, IINFO )
            ELSE
               IF( N.GT.1 ) THEN
                  CALL SORGLQ( N-1, N-1, N-1, A, LDA, TAU, WORK, -1,
     $                         IINFO )
               END IF
            END IF
         END IF
         LWKOPT = INT( WORK( 1 ) )
         LWKOPT = MAX (LWKOPT, MN)
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'SORGBR', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         WORK( 1 ) = LWKOPT
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 ) THEN
         WORK( 1 ) = 1
         RETURN
      END IF
*
      IF( WANTQ ) THEN
*
*        Form Q, determined by a call to SGEBRD to reduce an m-by-k
*        matrix
*
         IF( M.GE.K ) THEN
*
*           If m >= k, assume m >= n >= k
*
            CALL SORGQR( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If m < k, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           column to the right, and set the first row and column of Q
*           to those of the unit matrix
*
            DO 20 J = M, 2, -1
               A( 1, J ) = ZERO
               DO 10 I = J + 1, M
                  A( I, J ) = A( I, J-1 )
   10          CONTINUE
   20       CONTINUE
            A( 1, 1 ) = ONE
            DO 30 I = 2, M
               A( I, 1 ) = ZERO
   30       CONTINUE
            IF( M.GT.1 ) THEN
*
*              Form Q(2:m,2:m)
*
               CALL SORGQR( M-1, M-1, M-1, A( 2, 2 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      ELSE
*
*        Form P**T, determined by a call to SGEBRD to reduce a k-by-n
*        matrix
*
         IF( K.LT.N ) THEN
*
*           If k < n, assume k <= m <= n
*
            CALL SORGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, IINFO )
*
         ELSE
*
*           If k >= n, assume m = n
*
*           Shift the vectors which define the elementary reflectors one
*           row downward, and set the first row and column of P**T to
*           those of the unit matrix
*
            A( 1, 1 ) = ONE
            DO 40 I = 2, N
               A( I, 1 ) = ZERO
   40       CONTINUE
            DO 60 J = 2, N
               DO 50 I = J - 1, 2, -1
                  A( I, J ) = A( I-1, J )
   50          CONTINUE
               A( 1, J ) = ZERO
   60       CONTINUE
            IF( N.GT.1 ) THEN
*
*              Form P**T(2:n,2:n)
*
               CALL SORGLQ( N-1, N-1, N-1, A( 2, 2 ), LDA, TAU, WORK,
     $                      LWORK, IINFO )
            END IF
         END IF
      END IF
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of SORGBR
*
      END
 |