| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 
 | *> \brief \b ZLATRZ factors an upper trapezoidal matrix by means of unitary transformations.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLATRZ + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatrz.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatrz.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatrz.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
*
*       .. Scalar Arguments ..
*       INTEGER            L, LDA, M, N
*       ..
*       .. Array Arguments ..
*       COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZLATRZ factors the M-by-(M+L) complex upper trapezoidal matrix
*> [ A1 A2 ] = [ A(1:M,1:M) A(1:M,N-L+1:N) ] as ( R  0 ) * Z by means
*> of unitary transformations, where  Z is an (M+L)-by-(M+L) unitary
*> matrix and, R and A1 are M-by-M upper triangular matrices.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] L
*> \verbatim
*>          L is INTEGER
*>          The number of columns of the matrix A containing the
*>          meaningful part of the Householder vectors. N-M >= L >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the leading M-by-N upper trapezoidal part of the
*>          array A must contain the matrix to be factorized.
*>          On exit, the leading M-by-M upper triangular part of A
*>          contains the upper triangular matrix R, and elements N-L+1 to
*>          N of the first M rows of A, with the array TAU, represent the
*>          unitary matrix Z as a product of M elementary reflectors.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*>          TAU is COMPLEX*16 array, dimension (M)
*>          The scalar factors of the elementary reflectors.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (M)
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16OTHERcomputational
*
*> \par Contributors:
*  ==================
*>
*>    A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The factorization is obtained by Householder's method.  The kth
*>  transformation matrix, Z( k ), which is used to introduce zeros into
*>  the ( m - k + 1 )th row of A, is given in the form
*>
*>     Z( k ) = ( I     0   ),
*>              ( 0  T( k ) )
*>
*>  where
*>
*>     T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
*>                                                 (   0    )
*>                                                 ( z( k ) )
*>
*>  tau is a scalar and z( k ) is an l element vector. tau and z( k )
*>  are chosen to annihilate the elements of the kth row of A2.
*>
*>  The scalar tau is returned in the kth element of TAU and the vector
*>  u( k ) in the kth row of A2, such that the elements of z( k ) are
*>  in  a( k, l + 1 ), ..., a( k, n ). The elements of R are returned in
*>  the upper triangular part of A1.
*>
*>  Z is given by
*>
*>     Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE ZLATRZ( M, N, L, A, LDA, TAU, WORK )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            L, LDA, M, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         A( LDA, * ), TAU( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX*16         ZERO
      PARAMETER          ( ZERO = ( 0.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      COMPLEX*16         ALPHA
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLACGV, ZLARFG, ZLARZ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.EQ.0 ) THEN
         RETURN
      ELSE IF( M.EQ.N ) THEN
         DO 10 I = 1, N
            TAU( I ) = ZERO
   10    CONTINUE
         RETURN
      END IF
*
      DO 20 I = M, 1, -1
*
*        Generate elementary reflector H(i) to annihilate
*        [ A(i,i) A(i,n-l+1:n) ]
*
         CALL ZLACGV( L, A( I, N-L+1 ), LDA )
         ALPHA = DCONJG( A( I, I ) )
         CALL ZLARFG( L+1, ALPHA, A( I, N-L+1 ), LDA, TAU( I ) )
         TAU( I ) = DCONJG( TAU( I ) )
*
*        Apply H(i) to A(1:i-1,i:n) from the right
*
         CALL ZLARZ( 'Right', I-1, N-I+1, L, A( I, N-L+1 ), LDA,
     $               DCONJG( TAU( I ) ), A( 1, I ), LDA, WORK )
         A( I, I ) = DCONJG( ALPHA )
*
   20 CONTINUE
*
      RETURN
*
*     End of ZLATRZ
*
      END
 |