| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 
 | *> \brief \b ZSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm).
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZSYTRF_RK + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zsytrf_rk.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zsytrf_rk.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zsytrf_rk.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
*                             INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, LDA, LWORK, N
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX*16         A( LDA, * ), E ( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*> ZSYTRF_RK computes the factorization of a complex symmetric matrix A
*> using the bounded Bunch-Kaufman (rook) diagonal pivoting method:
*>
*>    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T),
*>
*> where U (or L) is unit upper (or lower) triangular matrix,
*> U**T (or L**T) is the transpose of U (or L), P is a permutation
*> matrix, P**T is the transpose of P, and D is symmetric and block
*> diagonal with 1-by-1 and 2-by-2 diagonal blocks.
*>
*> This is the blocked version of the algorithm, calling Level 3 BLAS.
*> For more information see Further Details section.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          On entry, the symmetric matrix A.
*>            If UPLO = 'U': the leading N-by-N upper triangular part
*>            of A contains the upper triangular part of the matrix A,
*>            and the strictly lower triangular part of A is not
*>            referenced.
*>
*>            If UPLO = 'L': the leading N-by-N lower triangular part
*>            of A contains the lower triangular part of the matrix A,
*>            and the strictly upper triangular part of A is not
*>            referenced.
*>
*>          On exit, contains:
*>            a) ONLY diagonal elements of the symmetric block diagonal
*>               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*>               (superdiagonal (or subdiagonal) elements of D
*>                are stored on exit in array E), and
*>            b) If UPLO = 'U': factor U in the superdiagonal part of A.
*>               If UPLO = 'L': factor L in the subdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*>          E is COMPLEX*16 array, dimension (N)
*>          On exit, contains the superdiagonal (or subdiagonal)
*>          elements of the symmetric block diagonal matrix D
*>          with 1-by-1 or 2-by-2 diagonal blocks, where
*>          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0;
*>          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0.
*>
*>          NOTE: For 1-by-1 diagonal block D(k), where
*>          1 <= k <= N, the element E(k) is set to 0 in both
*>          UPLO = 'U' or UPLO = 'L' cases.
*> \endverbatim
*>
*> \param[out] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          IPIV describes the permutation matrix P in the factorization
*>          of matrix A as follows. The absolute value of IPIV(k)
*>          represents the index of row and column that were
*>          interchanged with the k-th row and column. The value of UPLO
*>          describes the order in which the interchanges were applied.
*>          Also, the sign of IPIV represents the block structure of
*>          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2
*>          diagonal blocks which correspond to 1 or 2 interchanges
*>          at each factorization step. For more info see Further
*>          Details section.
*>
*>          If UPLO = 'U',
*>          ( in factorization order, k decreases from N to 1 ):
*>            a) A single positive entry IPIV(k) > 0 means:
*>               D(k,k) is a 1-by-1 diagonal block.
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
*>               interchanged in the matrix A(1:N,1:N);
*>               If IPIV(k) = k, no interchange occurred.
*>
*>            b) A pair of consecutive negative entries
*>               IPIV(k) < 0 and IPIV(k-1) < 0 means:
*>               D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
*>               1) If -IPIV(k) != k, rows and columns
*>                  k and -IPIV(k) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k) = k, no interchange occurred.
*>               2) If -IPIV(k-1) != k-1, rows and columns
*>                  k-1 and -IPIV(k-1) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k-1) = k-1, no interchange occurred.
*>
*>            c) In both cases a) and b), always ABS( IPIV(k) ) <= k.
*>
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
*>
*>          If UPLO = 'L',
*>          ( in factorization order, k increases from 1 to N ):
*>            a) A single positive entry IPIV(k) > 0 means:
*>               D(k,k) is a 1-by-1 diagonal block.
*>               If IPIV(k) != k, rows and columns k and IPIV(k) were
*>               interchanged in the matrix A(1:N,1:N).
*>               If IPIV(k) = k, no interchange occurred.
*>
*>            b) A pair of consecutive negative entries
*>               IPIV(k) < 0 and IPIV(k+1) < 0 means:
*>               D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*>               (NOTE: negative entries in IPIV appear ONLY in pairs).
*>               1) If -IPIV(k) != k, rows and columns
*>                  k and -IPIV(k) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k) = k, no interchange occurred.
*>               2) If -IPIV(k+1) != k+1, rows and columns
*>                  k-1 and -IPIV(k-1) were interchanged
*>                  in the matrix A(1:N,1:N).
*>                  If -IPIV(k+1) = k+1, no interchange occurred.
*>
*>            c) In both cases a) and b), always ABS( IPIV(k) ) >= k.
*>
*>            d) NOTE: Any entry IPIV(k) is always NONZERO on output.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ).
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The length of WORK.  LWORK >=1.  For best performance
*>          LWORK >= N*NB, where NB is the block size returned
*>          by ILAENV.
*>
*>          If LWORK = -1, then a workspace query is assumed;
*>          the routine only calculates the optimal size of the WORK
*>          array, returns this value as the first entry of the WORK
*>          array, and no error message related to LWORK is issued
*>          by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>
*>          < 0: If INFO = -k, the k-th argument had an illegal value
*>
*>          > 0: If INFO = k, the matrix A is singular, because:
*>                 If UPLO = 'U': column k in the upper
*>                 triangular part of A contains all zeros.
*>                 If UPLO = 'L': column k in the lower
*>                 triangular part of A contains all zeros.
*>
*>               Therefore D(k,k) is exactly zero, and superdiagonal
*>               elements of column k of U (or subdiagonal elements of
*>               column k of L ) are all zeros. The factorization has
*>               been completed, but the block diagonal matrix D is
*>               exactly singular, and division by zero will occur if
*>               it is used to solve a system of equations.
*>
*>               NOTE: INFO only stores the first occurrence of
*>               a singularity, any subsequent occurrence of singularity
*>               is not stored in INFO even though the factorization
*>               always completes.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16SYcomputational
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*> TODO: put correct description
*> \endverbatim
*
*> \par Contributors:
*  ==================
*>
*> \verbatim
*>
*>  December 2016,  Igor Kozachenko,
*>                  Computer Science Division,
*>                  University of California, Berkeley
*>
*>  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
*>                  School of Mathematics,
*>                  University of Manchester
*>
*> \endverbatim
*
*  =====================================================================
      SUBROUTINE ZSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK,
     $                      INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, LDA, LWORK, N
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), E( * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      LOGICAL            LQUERY, UPPER
      INTEGER            I, IINFO, IP, IWS, K, KB, LDWORK, LWKOPT,
     $                   NB, NBMIN
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ILAENV
      EXTERNAL           LSAME, ILAENV
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASYF_RK, ZSYTF2_RK, ZSWAP, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      LQUERY = ( LWORK.EQ.-1 )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -4
      ELSE IF( LWORK.LT.1 .AND. .NOT.LQUERY ) THEN
         INFO = -8
      END IF
*
      IF( INFO.EQ.0 ) THEN
*
*        Determine the block size
*
         NB = ILAENV( 1, 'ZSYTRF_RK', UPLO, N, -1, -1, -1 )
         LWKOPT = N*NB
         WORK( 1 ) = LWKOPT
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZSYTRF_RK', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
      NBMIN = 2
      LDWORK = N
      IF( NB.GT.1 .AND. NB.LT.N ) THEN
         IWS = LDWORK*NB
         IF( LWORK.LT.IWS ) THEN
            NB = MAX( LWORK / LDWORK, 1 )
            NBMIN = MAX( 2, ILAENV( 2, 'ZSYTRF_RK',
     $                              UPLO, N, -1, -1, -1 ) )
         END IF
      ELSE
         IWS = 1
      END IF
      IF( NB.LT.NBMIN )
     $   NB = N
*
      IF( UPPER ) THEN
*
*        Factorize A as U*D*U**T using the upper triangle of A
*
*        K is the main loop index, decreasing from N to 1 in steps of
*        KB, where KB is the number of columns factorized by ZLASYF_RK;
*        KB is either NB or NB-1, or K for the last block
*
         K = N
   10    CONTINUE
*
*        If K < 1, exit from loop
*
         IF( K.LT.1 )
     $      GO TO 15
*
         IF( K.GT.NB ) THEN
*
*           Factorize columns k-kb+1:k of A and use blocked code to
*           update columns 1:k-kb
*
            CALL ZLASYF_RK( UPLO, K, NB, KB, A, LDA, E,
     $                      IPIV, WORK, LDWORK, IINFO )
         ELSE
*
*           Use unblocked code to factorize columns 1:k of A
*
            CALL ZSYTF2_RK( UPLO, K, A, LDA, E, IPIV, IINFO )
            KB = K
         END IF
*
*        Set INFO on the first occurrence of a zero pivot
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO
*
*        No need to adjust IPIV
*
*
*        Apply permutations to the leading panel 1:k-1
*
*        Read IPIV from the last block factored, i.e.
*        indices  k-kb+1:k and apply row permutations to the
*        last k+1 colunms k+1:N after that block
*        (We can do the simple loop over IPIV with decrement -1,
*        since the ABS value of IPIV( I ) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         IF( K.LT.N ) THEN
            DO I = K, ( K - KB + 1 ), -1
               IP = ABS( IPIV( I ) )
               IF( IP.NE.I ) THEN
                  CALL ZSWAP( N-K, A( I, K+1 ), LDA,
     $                        A( IP, K+1 ), LDA )
               END IF
            END DO
         END IF
*
*        Decrease K and return to the start of the main loop
*
         K = K - KB
         GO TO 10
*
*        This label is the exit from main loop over K decreasing
*        from N to 1 in steps of KB
*
   15    CONTINUE
*
      ELSE
*
*        Factorize A as L*D*L**T using the lower triangle of A
*
*        K is the main loop index, increasing from 1 to N in steps of
*        KB, where KB is the number of columns factorized by ZLASYF_RK;
*        KB is either NB or NB-1, or N-K+1 for the last block
*
         K = 1
   20    CONTINUE
*
*        If K > N, exit from loop
*
         IF( K.GT.N )
     $      GO TO 35
*
         IF( K.LE.N-NB ) THEN
*
*           Factorize columns k:k+kb-1 of A and use blocked code to
*           update columns k+kb:n
*
            CALL ZLASYF_RK( UPLO, N-K+1, NB, KB, A( K, K ), LDA, E( K ),
     $                        IPIV( K ), WORK, LDWORK, IINFO )
         ELSE
*
*           Use unblocked code to factorize columns k:n of A
*
            CALL ZSYTF2_RK( UPLO, N-K+1, A( K, K ), LDA, E( K ),
     $                      IPIV( K ), IINFO )
            KB = N - K + 1
*
         END IF
*
*        Set INFO on the first occurrence of a zero pivot
*
         IF( INFO.EQ.0 .AND. IINFO.GT.0 )
     $      INFO = IINFO + K - 1
*
*        Adjust IPIV
*
         DO I = K, K + KB - 1
            IF( IPIV( I ).GT.0 ) THEN
               IPIV( I ) = IPIV( I ) + K - 1
            ELSE
               IPIV( I ) = IPIV( I ) - K + 1
            END IF
         END DO
*
*        Apply permutations to the leading panel 1:k-1
*
*        Read IPIV from the last block factored, i.e.
*        indices  k:k+kb-1 and apply row permutations to the
*        first k-1 colunms 1:k-1 before that block
*        (We can do the simple loop over IPIV with increment 1,
*        since the ABS value of IPIV( I ) represents the row index
*        of the interchange with row i in both 1x1 and 2x2 pivot cases)
*
         IF( K.GT.1 ) THEN
            DO I = K, ( K + KB - 1 ), 1
               IP = ABS( IPIV( I ) )
               IF( IP.NE.I ) THEN
                  CALL ZSWAP( K-1, A( I, 1 ), LDA,
     $                        A( IP, 1 ), LDA )
               END IF
            END DO
         END IF
*
*        Increase K and return to the start of the main loop
*
         K = K + KB
         GO TO 20
*
*        This label is the exit from main loop over K increasing
*        from 1 to N in steps of KB
*
   35    CONTINUE
*
*     End Lower
*
      END IF
*
      WORK( 1 ) = LWKOPT
      RETURN
*
*     End of ZSYTRF_RK
*
      END
 |