1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
|
*> \brief \b DCHKBD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
* ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
* Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
* IWORK, NOUT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
* $ NSIZES, NTYPES
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
* DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
* $ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
* $ VT( LDPT, * ), WORK( * ), X( LDX, * ),
* $ Y( LDX, * ), Z( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCHKBD checks the singular value decomposition (SVD) routines.
*>
*> DGEBRD reduces a real general m by n matrix A to upper or lower
*> bidiagonal form B by an orthogonal transformation: Q' * A * P = B
*> (or A = Q * B * P'). The matrix B is upper bidiagonal if m >= n
*> and lower bidiagonal if m < n.
*>
*> DORGBR generates the orthogonal matrices Q and P' from DGEBRD.
*> Note that Q and P are not necessarily square.
*>
*> DBDSQR computes the singular value decomposition of the bidiagonal
*> matrix B as B = U S V'. It is called three times to compute
*> 1) B = U S1 V', where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B.
*> 2) Same as 1), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*> 3) A = (UQ) S (P'V'), the SVD of the original matrix A.
*> In addition, DBDSQR has an option to apply the left orthogonal matrix
*> U to a matrix X, useful in least squares applications.
*>
*> DBDSDC computes the singular value decomposition of the bidiagonal
*> matrix B as B = U S V' using divide-and-conquer. It is called twice
*> to compute
*> 1) B = U S1 V', where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B.
*> 2) Same as 1), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*>
*> DBDSVDX computes the singular value decomposition of the bidiagonal
*> matrix B as B = U S V' using bisection and inverse iteration. It is
*> called six times to compute
*> 1) B = U S1 V', RANGE='A', where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B.
*> 2) Same as 1), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*> 3) B = U S1 V', RANGE='I', with where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B
*> 4) Same as 3), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*> 5) B = U S1 V', RANGE='V', with where S1 is the diagonal matrix of singular
*> values and the columns of the matrices U and V are the left
*> and right singular vectors, respectively, of B
*> 6) Same as 5), but the singular values are stored in S2 and the
*> singular vectors are not computed.
*>
*> For each pair of matrix dimensions (M,N) and each selected matrix
*> type, an M by N matrix A and an M by NRHS matrix X are generated.
*> The problem dimensions are as follows
*> A: M x N
*> Q: M x min(M,N) (but M x M if NRHS > 0)
*> P: min(M,N) x N
*> B: min(M,N) x min(M,N)
*> U, V: min(M,N) x min(M,N)
*> S1, S2 diagonal, order min(M,N)
*> X: M x NRHS
*>
*> For each generated matrix, 14 tests are performed:
*>
*> Test DGEBRD and DORGBR
*>
*> (1) | A - Q B PT | / ( |A| max(M,N) ulp ), PT = P'
*>
*> (2) | I - Q' Q | / ( M ulp )
*>
*> (3) | I - PT PT' | / ( N ulp )
*>
*> Test DBDSQR on bidiagonal matrix B
*>
*> (4) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*>
*> (5) | Y - U Z | / ( |Y| max(min(M,N),k) ulp ), where Y = Q' X
*> and Z = U' Y.
*> (6) | I - U' U | / ( min(M,N) ulp )
*>
*> (7) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (8) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (9) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> (10) 0 if the true singular values of B are within THRESH of
*> those in S1. 2*THRESH if they are not. (Tested using
*> DSVDCH)
*>
*> Test DBDSQR on matrix A
*>
*> (11) | A - (QU) S (VT PT) | / ( |A| max(M,N) ulp )
*>
*> (12) | X - (QU) Z | / ( |X| max(M,k) ulp )
*>
*> (13) | I - (QU)'(QU) | / ( M ulp )
*>
*> (14) | I - (VT PT) (PT'VT') | / ( N ulp )
*>
*> Test DBDSDC on bidiagonal matrix B
*>
*> (15) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*>
*> (16) | I - U' U | / ( min(M,N) ulp )
*>
*> (17) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (18) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (19) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*> Test DBDSVDX on bidiagonal matrix B
*>
*> (20) | B - U S1 VT | / ( |B| min(M,N) ulp ), VT = V'
*>
*> (21) | I - U' U | / ( min(M,N) ulp )
*>
*> (22) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (23) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (24) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> (25) | S1 - U' B VT' | / ( |S| n ulp ) DBDSVDX('V', 'I')
*>
*> (26) | I - U' U | / ( min(M,N) ulp )
*>
*> (27) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (28) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (29) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> (30) | S1 - U' B VT' | / ( |S1| n ulp ) DBDSVDX('V', 'V')
*>
*> (31) | I - U' U | / ( min(M,N) ulp )
*>
*> (32) | I - VT VT' | / ( min(M,N) ulp )
*>
*> (33) S1 contains min(M,N) nonnegative values in decreasing order.
*> (Return 0 if true, 1/ULP if false.)
*>
*> (34) | S1 - S2 | / ( |S1| ulp ), where S2 is computed without
*> computing U and V.
*>
*> The possible matrix types are
*>
*> (1) The zero matrix.
*> (2) The identity matrix.
*>
*> (3) A diagonal matrix with evenly spaced entries
*> 1, ..., ULP and random signs.
*> (ULP = (first number larger than 1) - 1 )
*> (4) A diagonal matrix with geometrically spaced entries
*> 1, ..., ULP and random signs.
*> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
*> and random signs.
*>
*> (6) Same as (3), but multiplied by SQRT( overflow threshold )
*> (7) Same as (3), but multiplied by SQRT( underflow threshold )
*>
*> (8) A matrix of the form U D V, where U and V are orthogonal and
*> D has evenly spaced entries 1, ..., ULP with random signs
*> on the diagonal.
*>
*> (9) A matrix of the form U D V, where U and V are orthogonal and
*> D has geometrically spaced entries 1, ..., ULP with random
*> signs on the diagonal.
*>
*> (10) A matrix of the form U D V, where U and V are orthogonal and
*> D has "clustered" entries 1, ULP,..., ULP with random
*> signs on the diagonal.
*>
*> (11) Same as (8), but multiplied by SQRT( overflow threshold )
*> (12) Same as (8), but multiplied by SQRT( underflow threshold )
*>
*> (13) Rectangular matrix with random entries chosen from (-1,1).
*> (14) Same as (13), but multiplied by SQRT( overflow threshold )
*> (15) Same as (13), but multiplied by SQRT( underflow threshold )
*>
*> Special case:
*> (16) A bidiagonal matrix with random entries chosen from a
*> logarithmic distribution on [ulp^2,ulp^(-2)] (I.e., each
*> entry is e^x, where x is chosen uniformly on
*> [ 2 log(ulp), -2 log(ulp) ] .) For *this* type:
*> (a) DGEBRD is not called to reduce it to bidiagonal form.
*> (b) the bidiagonal is min(M,N) x min(M,N); if M<N, the
*> matrix will be lower bidiagonal, otherwise upper.
*> (c) only tests 5--8 and 14 are performed.
*>
*> A subset of the full set of matrix types may be selected through
*> the logical array DOTYPE.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of values of M and N contained in the vectors
*> MVAL and NVAL. The matrix sizes are used in pairs (M,N).
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NM)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, DCHKBD
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrices are in A and B.
*> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size (m,n), a matrix
*> of type j will be generated. If NTYPES is smaller than the
*> maximum number of types defined (PARAMETER MAXTYP), then
*> types NTYPES+1 through MAXTYP will not be generated. If
*> NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through
*> DOTYPE(NTYPES) will be ignored.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns in the "right-hand side" matrices X, Y,
*> and Z, used in testing DBDSQR. If NRHS = 0, then the
*> operations on the right-hand side will not be tested.
*> NRHS must be at least 0.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The values of ISEED are changed on exit, and can be
*> used in the next call to DCHKBD to continue the same random
*> number sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0. Note that the
*> expected value of the test ratios is O(1), so THRESH should
*> be a reasonably small multiple of 1, e.g., 10 or 100.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,NMAX)
*> where NMAX is the maximum value of N in NVAL.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,MMAX),
*> where MMAX is the maximum value of M in MVAL.
*> \endverbatim
*>
*> \param[out] BD
*> \verbatim
*> BD is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] BE
*> \verbatim
*> BE is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] S1
*> \verbatim
*> S1 is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] S2
*> \verbatim
*> S2 is DOUBLE PRECISION array, dimension
*> (max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the arrays X, Y, and Z.
*> LDX >= max(1,MMAX)
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*> Y is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,MMAX)
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,MMAX).
*> \endverbatim
*>
*> \param[out] PT
*> \verbatim
*> PT is DOUBLE PRECISION array, dimension (LDPT,NMAX)
*> \endverbatim
*>
*> \param[in] LDPT
*> \verbatim
*> LDPT is INTEGER
*> The leading dimension of the arrays PT, U, and V.
*> LDPT >= max(1, max(min(MVAL(j),NVAL(j)))).
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension
*> (LDPT,max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] VT
*> \verbatim
*> VT is DOUBLE PRECISION array, dimension
*> (LDPT,max(min(MVAL(j),NVAL(j))))
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The number of entries in WORK. This must be at least
*> 3(M+N) and M(M + max(M,N,k) + 1) + N*min(M,N) for all
*> pairs (M,N)=(MM(j),NN(j))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension at least 8*min(M,N)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> If 0, then everything ran OK.
*> -1: NSIZES < 0
*> -2: Some MM(j) < 0
*> -3: Some NN(j) < 0
*> -4: NTYPES < 0
*> -6: NRHS < 0
*> -8: THRESH < 0
*> -11: LDA < 1 or LDA < MMAX, where MMAX is max( MM(j) ).
*> -17: LDB < 1 or LDB < MMAX.
*> -21: LDQ < 1 or LDQ < MMAX.
*> -23: LDPT< 1 or LDPT< MNMAX.
*> -27: LWORK too small.
*> If DLATMR, SLATMS, DGEBRD, DORGBR, or DBDSQR,
*> returns an error code, the
*> absolute value of it is returned.
*>
*>-----------------------------------------------------------------------
*>
*> Some Local Variables and Parameters:
*> ---- ----- --------- --- ----------
*>
*> ZERO, ONE Real 0 and 1.
*> MAXTYP The number of types defined.
*> NTEST The number of tests performed, or which can
*> be performed so far, for the current matrix.
*> MMAX Largest value in NN.
*> NMAX Largest value in NN.
*> MNMIN min(MM(j), NN(j)) (the dimension of the bidiagonal
*> matrix.)
*> MNMAX The maximum value of MNMIN for j=1,...,NSIZES.
*> NFAIL The number of tests which have exceeded THRESH
*> COND, IMODE Values to be passed to the matrix generators.
*> ANORM Norm of A; passed to matrix generators.
*>
*> OVFL, UNFL Overflow and underflow thresholds.
*> RTOVFL, RTUNFL Square roots of the previous 2 values.
*> ULP, ULPINV Finest relative precision and its inverse.
*>
*> The following four arrays decode JTYPE:
*> KTYPE(j) The general type (1-10) for type "j".
*> KMODE(j) The MODE value to be passed to the matrix
*> generator for type "j".
*> KMAGN(j) The order of magnitude ( O(1),
*> O(overflow^(1/2) ), O(underflow^(1/2) )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DCHKBD( NSIZES, MVAL, NVAL, NTYPES, DOTYPE, NRHS,
$ ISEED, THRESH, A, LDA, BD, BE, S1, S2, X, LDX,
$ Y, Z, Q, LDQ, PT, LDPT, U, VT, WORK, LWORK,
$ IWORK, NOUT, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDPT, LDQ, LDX, LWORK, NOUT, NRHS,
$ NSIZES, NTYPES
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER ISEED( 4 ), IWORK( * ), MVAL( * ), NVAL( * )
DOUBLE PRECISION A( LDA, * ), BD( * ), BE( * ), PT( LDPT, * ),
$ Q( LDQ, * ), S1( * ), S2( * ), U( LDPT, * ),
$ VT( LDPT, * ), WORK( * ), X( LDX, * ),
$ Y( LDX, * ), Z( LDX, * )
* ..
*
* ======================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO, HALF
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0,
$ HALF = 0.5D0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 16 )
* ..
* .. Local Scalars ..
LOGICAL BADMM, BADNN, BIDIAG
CHARACTER UPLO
CHARACTER*3 PATH
INTEGER I, IINFO, IL, IMODE, ITEMP, ITYPE, IU, IWBD,
$ IWBE, IWBS, IWBZ, IWWORK, J, JCOL, JSIZE,
$ JTYPE, LOG2UI, M, MINWRK, MMAX, MNMAX, MNMIN,
$ MNMIN2, MQ, MTYPES, N, NFAIL, NMAX,
$ NS1, NS2, NTEST
DOUBLE PRECISION ABSTOL, AMNINV, ANORM, COND, OVFL, RTOVFL,
$ RTUNFL, TEMP1, TEMP2, ULP, ULPINV, UNFL,
$ VL, VU
* ..
* .. Local Arrays ..
INTEGER IDUM( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
$ KMAGN( MAXTYP ), KMODE( MAXTYP ),
$ KTYPE( MAXTYP )
DOUBLE PRECISION DUM( 1 ), DUMMA( 1 ), RESULT( 40 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLARND, DSXT1
EXTERNAL DLAMCH, DLARND, DSXT1
* ..
* .. External Subroutines ..
EXTERNAL ALASUM, DBDSDC, DBDSQR, DBDSVDX, DBDT01,
$ DBDT02, DBDT03, DBDT04, DCOPY, DGEBRD,
$ DGEMM, DLABAD, DLACPY, DLAHD2, DLASET,
$ DLATMR, DLATMS, DORGBR, DORT01, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, EXP, INT, LOG, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA KTYPE / 1, 2, 5*4, 5*6, 3*9, 10 /
DATA KMAGN / 2*1, 3*1, 2, 3, 3*1, 2, 3, 1, 2, 3, 0 /
DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
$ 0, 0, 0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADMM = .FALSE.
BADNN = .FALSE.
MMAX = 1
NMAX = 1
MNMAX = 1
MINWRK = 1
DO 10 J = 1, NSIZES
MMAX = MAX( MMAX, MVAL( J ) )
IF( MVAL( J ).LT.0 )
$ BADMM = .TRUE.
NMAX = MAX( NMAX, NVAL( J ) )
IF( NVAL( J ).LT.0 )
$ BADNN = .TRUE.
MNMAX = MAX( MNMAX, MIN( MVAL( J ), NVAL( J ) ) )
MINWRK = MAX( MINWRK, 3*( MVAL( J )+NVAL( J ) ),
$ MVAL( J )*( MVAL( J )+MAX( MVAL( J ), NVAL( J ),
$ NRHS )+1 )+NVAL( J )*MIN( NVAL( J ), MVAL( J ) ) )
10 CONTINUE
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADMM ) THEN
INFO = -2
ELSE IF( BADNN ) THEN
INFO = -3
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -4
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.MMAX ) THEN
INFO = -11
ELSE IF( LDX.LT.MMAX ) THEN
INFO = -17
ELSE IF( LDQ.LT.MMAX ) THEN
INFO = -21
ELSE IF( LDPT.LT.MNMAX ) THEN
INFO = -23
ELSE IF( MINWRK.GT.LWORK ) THEN
INFO = -27
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DCHKBD', -INFO )
RETURN
END IF
*
* Initialize constants
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'BD'
NFAIL = 0
NTEST = 0
UNFL = DLAMCH( 'Safe minimum' )
OVFL = DLAMCH( 'Overflow' )
CALL DLABAD( UNFL, OVFL )
ULP = DLAMCH( 'Precision' )
ULPINV = ONE / ULP
LOG2UI = INT( LOG( ULPINV ) / LOG( TWO ) )
RTUNFL = SQRT( UNFL )
RTOVFL = SQRT( OVFL )
INFOT = 0
ABSTOL = 2*UNFL
*
* Loop over sizes, types
*
DO 300 JSIZE = 1, NSIZES
M = MVAL( JSIZE )
N = NVAL( JSIZE )
MNMIN = MIN( M, N )
AMNINV = ONE / MAX( M, N, 1 )
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 290 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 290
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
DO 30 J = 1, 34
RESULT( J ) = -ONE
30 CONTINUE
*
UPLO = ' '
*
* Compute "A"
*
* Control parameters:
*
* KMAGN KMODE KTYPE
* =1 O(1) clustered 1 zero
* =2 large clustered 2 identity
* =3 small exponential (none)
* =4 arithmetic diagonal, (w/ eigenvalues)
* =5 random symmetric, w/ eigenvalues
* =6 nonsymmetric, w/ singular values
* =7 random diagonal
* =8 random symmetric
* =9 random nonsymmetric
* =10 random bidiagonal (log. distrib.)
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 100
*
ITYPE = KTYPE( JTYPE )
IMODE = KMODE( JTYPE )
*
* Compute norm
*
GO TO ( 40, 50, 60 )KMAGN( JTYPE )
*
40 CONTINUE
ANORM = ONE
GO TO 70
*
50 CONTINUE
ANORM = ( RTOVFL*ULP )*AMNINV
GO TO 70
*
60 CONTINUE
ANORM = RTUNFL*MAX( M, N )*ULPINV
GO TO 70
*
70 CONTINUE
*
CALL DLASET( 'Full', LDA, N, ZERO, ZERO, A, LDA )
IINFO = 0
COND = ULPINV
*
BIDIAG = .FALSE.
IF( ITYPE.EQ.1 ) THEN
*
* Zero matrix
*
IINFO = 0
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* Identity
*
DO 80 JCOL = 1, MNMIN
A( JCOL, JCOL ) = ANORM
80 CONTINUE
*
ELSE IF( ITYPE.EQ.4 ) THEN
*
* Diagonal Matrix, [Eigen]values Specified
*
CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, IMODE,
$ COND, ANORM, 0, 0, 'N', A, LDA,
$ WORK( MNMIN+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.5 ) THEN
*
* Symmetric, eigenvalues specified
*
CALL DLATMS( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, IMODE,
$ COND, ANORM, M, N, 'N', A, LDA,
$ WORK( MNMIN+1 ), IINFO )
*
ELSE IF( ITYPE.EQ.6 ) THEN
*
* Nonsymmetric, singular values specified
*
CALL DLATMS( M, N, 'S', ISEED, 'N', WORK, IMODE, COND,
$ ANORM, M, N, 'N', A, LDA, WORK( MNMIN+1 ),
$ IINFO )
*
ELSE IF( ITYPE.EQ.7 ) THEN
*
* Diagonal, random entries
*
CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'N', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( 2*MNMIN+1 ), 1, ONE, 'N', IWORK, 0, 0,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.8 ) THEN
*
* Symmetric, random entries
*
CALL DLATMR( MNMIN, MNMIN, 'S', ISEED, 'S', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.9 ) THEN
*
* Nonsymmetric, random entries
*
CALL DLATMR( M, N, 'S', ISEED, 'N', WORK, 6, ONE, ONE,
$ 'T', 'N', WORK( MNMIN+1 ), 1, ONE,
$ WORK( M+MNMIN+1 ), 1, ONE, 'N', IWORK, M, N,
$ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
*
ELSE IF( ITYPE.EQ.10 ) THEN
*
* Bidiagonal, random entries
*
TEMP1 = -TWO*LOG( ULP )
DO 90 J = 1, MNMIN
BD( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
IF( J.LT.MNMIN )
$ BE( J ) = EXP( TEMP1*DLARND( 2, ISEED ) )
90 CONTINUE
*
IINFO = 0
BIDIAG = .TRUE.
IF( M.GE.N ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
ELSE
IINFO = 1
END IF
*
IF( IINFO.EQ.0 ) THEN
*
* Generate Right-Hand Side
*
IF( BIDIAG ) THEN
CALL DLATMR( MNMIN, NRHS, 'S', ISEED, 'N', WORK, 6,
$ ONE, ONE, 'T', 'N', WORK( MNMIN+1 ), 1,
$ ONE, WORK( 2*MNMIN+1 ), 1, ONE, 'N',
$ IWORK, MNMIN, NRHS, ZERO, ONE, 'NO', Y,
$ LDX, IWORK, IINFO )
ELSE
CALL DLATMR( M, NRHS, 'S', ISEED, 'N', WORK, 6, ONE,
$ ONE, 'T', 'N', WORK( M+1 ), 1, ONE,
$ WORK( 2*M+1 ), 1, ONE, 'N', IWORK, M,
$ NRHS, ZERO, ONE, 'NO', X, LDX, IWORK,
$ IINFO )
END IF
END IF
*
* Error Exit
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'Generator', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
100 CONTINUE
*
* Call DGEBRD and DORGBR to compute B, Q, and P, do tests.
*
IF( .NOT.BIDIAG ) THEN
*
* Compute transformations to reduce A to bidiagonal form:
* B := Q' * A * P.
*
CALL DLACPY( ' ', M, N, A, LDA, Q, LDQ )
CALL DGEBRD( M, N, Q, LDQ, BD, BE, WORK, WORK( MNMIN+1 ),
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DGEBRD.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DGEBRD', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
CALL DLACPY( ' ', M, N, Q, LDQ, PT, LDPT )
IF( M.GE.N ) THEN
UPLO = 'U'
ELSE
UPLO = 'L'
END IF
*
* Generate Q
*
MQ = M
IF( NRHS.LE.0 )
$ MQ = MNMIN
CALL DORGBR( 'Q', M, MQ, N, Q, LDQ, WORK,
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DORGBR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DORGBR(Q)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
* Generate P'
*
CALL DORGBR( 'P', MNMIN, N, M, PT, LDPT, WORK( MNMIN+1 ),
$ WORK( 2*MNMIN+1 ), LWORK-2*MNMIN, IINFO )
*
* Check error code from DORGBR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DORGBR(P)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
* Apply Q' to an M by NRHS matrix X: Y := Q' * X.
*
CALL DGEMM( 'Transpose', 'No transpose', M, NRHS, M, ONE,
$ Q, LDQ, X, LDX, ZERO, Y, LDX )
*
* Test 1: Check the decomposition A := Q * B * PT
* 2: Check the orthogonality of Q
* 3: Check the orthogonality of PT
*
CALL DBDT01( M, N, 1, A, LDA, Q, LDQ, BD, BE, PT, LDPT,
$ WORK, RESULT( 1 ) )
CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
$ RESULT( 2 ) )
CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
$ RESULT( 3 ) )
END IF
*
* Use DBDSQR to form the SVD of the bidiagonal matrix B:
* B := U * S1 * VT, and compute Z = U' * Y.
*
CALL DCOPY( MNMIN, BD, 1, S1, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
CALL DLACPY( ' ', M, NRHS, Y, LDX, Z, LDX )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
*
CALL DBDSQR( UPLO, MNMIN, MNMIN, MNMIN, NRHS, S1, WORK, VT,
$ LDPT, U, LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
*
* Check error code from DBDSQR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSQR(vects)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 4 ) = ULPINV
GO TO 270
END IF
END IF
*
* Use DBDSQR to compute only the singular values of the
* bidiagonal matrix B; U, VT, and Z should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSQR( UPLO, MNMIN, 0, 0, 0, S2, WORK, VT, LDPT, U,
$ LDPT, Z, LDX, WORK( MNMIN+1 ), IINFO )
*
* Check error code from DBDSQR.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSQR(values)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 9 ) = ULPINV
GO TO 270
END IF
END IF
*
* Test 4: Check the decomposition B := U * S1 * VT
* 5: Check the computation Z := U' * Y
* 6: Check the orthogonality of U
* 7: Check the orthogonality of VT
*
CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
$ WORK, RESULT( 4 ) )
CALL DBDT02( MNMIN, NRHS, Y, LDX, Z, LDX, U, LDPT, WORK,
$ RESULT( 5 ) )
CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
$ RESULT( 6 ) )
CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
$ RESULT( 7 ) )
*
* Test 8: Check that the singular values are sorted in
* non-increasing order and are non-negative
*
RESULT( 8 ) = ZERO
DO 110 I = 1, MNMIN - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 8 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 8 ) = ULPINV
110 CONTINUE
IF( MNMIN.GE.1 ) THEN
IF( S1( MNMIN ).LT.ZERO )
$ RESULT( 8 ) = ULPINV
END IF
*
* Test 9: Compare DBDSQR with and without singular vectors
*
TEMP2 = ZERO
*
DO 120 J = 1, MNMIN
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( J ) ), ABS( S2( J ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
120 CONTINUE
*
RESULT( 9 ) = TEMP2
*
* Test 10: Sturm sequence test of singular values
* Go up by factors of two until it succeeds
*
TEMP1 = THRESH*( HALF-ULP )
*
DO 130 J = 0, LOG2UI
* CALL DSVDCH( MNMIN, BD, BE, S1, TEMP1, IINFO )
IF( IINFO.EQ.0 )
$ GO TO 140
TEMP1 = TEMP1*TWO
130 CONTINUE
*
140 CONTINUE
RESULT( 10 ) = TEMP1
*
* Use DBDSQR to form the decomposition A := (QU) S (VT PT)
* from the bidiagonal form A := Q B PT.
*
IF( .NOT.BIDIAG ) THEN
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSQR( UPLO, MNMIN, N, M, NRHS, S2, WORK, PT, LDPT,
$ Q, LDQ, Y, LDX, WORK( MNMIN+1 ), IINFO )
*
* Test 11: Check the decomposition A := Q*U * S2 * VT*PT
* 12: Check the computation Z := U' * Q' * X
* 13: Check the orthogonality of Q*U
* 14: Check the orthogonality of VT*PT
*
CALL DBDT01( M, N, 0, A, LDA, Q, LDQ, S2, DUMMA, PT,
$ LDPT, WORK, RESULT( 11 ) )
CALL DBDT02( M, NRHS, X, LDX, Y, LDX, Q, LDQ, WORK,
$ RESULT( 12 ) )
CALL DORT01( 'Columns', M, MQ, Q, LDQ, WORK, LWORK,
$ RESULT( 13 ) )
CALL DORT01( 'Rows', MNMIN, N, PT, LDPT, WORK, LWORK,
$ RESULT( 14 ) )
END IF
*
* Use DBDSDC to form the SVD of the bidiagonal matrix B:
* B := U * S1 * VT
*
CALL DCOPY( MNMIN, BD, 1, S1, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, U, LDPT )
CALL DLASET( 'Full', MNMIN, MNMIN, ZERO, ONE, VT, LDPT )
*
CALL DBDSDC( UPLO, 'I', MNMIN, S1, WORK, U, LDPT, VT, LDPT,
$ DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
*
* Check error code from DBDSDC.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSDC(vects)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 15 ) = ULPINV
GO TO 270
END IF
END IF
*
* Use DBDSDC to compute only the singular values of the
* bidiagonal matrix B; U and VT should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, S2, 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK, 1 )
*
CALL DBDSDC( UPLO, 'N', MNMIN, S2, WORK, DUM, 1, DUM, 1,
$ DUM, IDUM, WORK( MNMIN+1 ), IWORK, IINFO )
*
* Check error code from DBDSDC.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSDC(values)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 18 ) = ULPINV
GO TO 270
END IF
END IF
*
* Test 15: Check the decomposition B := U * S1 * VT
* 16: Check the orthogonality of U
* 17: Check the orthogonality of VT
*
CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT, LDPT,
$ WORK, RESULT( 15 ) )
CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT, WORK, LWORK,
$ RESULT( 16 ) )
CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT, WORK, LWORK,
$ RESULT( 17 ) )
*
* Test 18: Check that the singular values are sorted in
* non-increasing order and are non-negative
*
RESULT( 18 ) = ZERO
DO 150 I = 1, MNMIN - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 18 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 18 ) = ULPINV
150 CONTINUE
IF( MNMIN.GE.1 ) THEN
IF( S1( MNMIN ).LT.ZERO )
$ RESULT( 18 ) = ULPINV
END IF
*
* Test 19: Compare DBDSQR with and without singular vectors
*
TEMP2 = ZERO
*
DO 160 J = 1, MNMIN
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
160 CONTINUE
*
RESULT( 19 ) = TEMP2
*
*
* Use DBDSVDX to compute the SVD of the bidiagonal matrix B:
* B := U * S1 * VT
*
IF( JTYPE.EQ.10 .OR. JTYPE.EQ.16 ) THEN
* =================================
* Matrix types temporarily disabled
* =================================
RESULT( 20:34 ) = ZERO
GO TO 270
END IF
*
IWBS = 1
IWBD = IWBS + MNMIN
IWBE = IWBD + MNMIN
IWBZ = IWBE + MNMIN
IWWORK = IWBZ + 2*MNMIN*(MNMIN+1)
MNMIN2 = MAX( 1,MNMIN*2 )
*
CALL DCOPY( MNMIN, BD, 1, WORK( IWBD ), 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK( IWBE ), 1 )
*
CALL DBDSVDX( UPLO, 'V', 'A', MNMIN, WORK( IWBD ),
$ WORK( IWBE ), ZERO, ZERO, 0, 0, NS1, S1,
$ WORK( IWBZ ), MNMIN2, WORK( IWWORK ),
$ IWORK, IINFO)
*
* Check error code from DBDSVDX.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSVDX(vects,A)', IINFO, M, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 20 ) = ULPINV
GO TO 270
END IF
END IF
*
J = IWBZ
DO 170 I = 1, NS1
CALL DCOPY( MNMIN, WORK( J ), 1, U( 1,I ), 1 )
J = J + MNMIN
CALL DCOPY( MNMIN, WORK( J ), 1, VT( I,1 ), LDPT )
J = J + MNMIN
170 CONTINUE
*
* Use DBDSVDX to compute only the singular values of the
* bidiagonal matrix B; U and VT should not be modified.
*
IF( JTYPE.EQ.9 ) THEN
* =================================
* Matrix types temporarily disabled
* =================================
RESULT( 24 ) = ZERO
GO TO 270
END IF
*
CALL DCOPY( MNMIN, BD, 1, WORK( IWBD ), 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK( IWBE ), 1 )
*
CALL DBDSVDX( UPLO, 'N', 'A', MNMIN, WORK( IWBD ),
$ WORK( IWBE ), ZERO, ZERO, 0, 0, NS2, S2,
$ WORK( IWBZ ), MNMIN2, WORK( IWWORK ),
$ IWORK, IINFO )
*
* Check error code from DBDSVDX.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSVDX(values,A)', IINFO,
$ M, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 24 ) = ULPINV
GO TO 270
END IF
END IF
*
* Save S1 for tests 30-34.
*
CALL DCOPY( MNMIN, S1, 1, WORK( IWBS ), 1 )
*
* Test 20: Check the decomposition B := U * S1 * VT
* 21: Check the orthogonality of U
* 22: Check the orthogonality of VT
* 23: Check that the singular values are sorted in
* non-increasing order and are non-negative
* 24: Compare DBDSVDX with and without singular vectors
*
CALL DBDT03( UPLO, MNMIN, 1, BD, BE, U, LDPT, S1, VT,
$ LDPT, WORK( IWBS+MNMIN ), RESULT( 20 ) )
CALL DORT01( 'Columns', MNMIN, MNMIN, U, LDPT,
$ WORK( IWBS+MNMIN ), LWORK-MNMIN,
$ RESULT( 21 ) )
CALL DORT01( 'Rows', MNMIN, MNMIN, VT, LDPT,
$ WORK( IWBS+MNMIN ), LWORK-MNMIN,
$ RESULT( 22) )
*
RESULT( 23 ) = ZERO
DO 180 I = 1, MNMIN - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 23 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 23 ) = ULPINV
180 CONTINUE
IF( MNMIN.GE.1 ) THEN
IF( S1( MNMIN ).LT.ZERO )
$ RESULT( 23 ) = ULPINV
END IF
*
TEMP2 = ZERO
DO 190 J = 1, MNMIN
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
190 CONTINUE
RESULT( 24 ) = TEMP2
ANORM = S1( 1 )
*
* Use DBDSVDX with RANGE='I': choose random values for IL and
* IU, and ask for the IL-th through IU-th singular values
* and corresponding vectors.
*
DO 200 I = 1, 4
ISEED2( I ) = ISEED( I )
200 CONTINUE
IF( MNMIN.LE.1 ) THEN
IL = 1
IU = MNMIN
ELSE
IL = 1 + INT( ( MNMIN-1 )*DLARND( 1, ISEED2 ) )
IU = 1 + INT( ( MNMIN-1 )*DLARND( 1, ISEED2 ) )
IF( IU.LT.IL ) THEN
ITEMP = IU
IU = IL
IL = ITEMP
END IF
END IF
*
CALL DCOPY( MNMIN, BD, 1, WORK( IWBD ), 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK( IWBE ), 1 )
*
CALL DBDSVDX( UPLO, 'V', 'I', MNMIN, WORK( IWBD ),
$ WORK( IWBE ), ZERO, ZERO, IL, IU, NS1, S1,
$ WORK( IWBZ ), MNMIN2, WORK( IWWORK ),
$ IWORK, IINFO)
*
* Check error code from DBDSVDX.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSVDX(vects,I)', IINFO,
$ M, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 25 ) = ULPINV
GO TO 270
END IF
END IF
*
J = IWBZ
DO 210 I = 1, NS1
CALL DCOPY( MNMIN, WORK( J ), 1, U( 1,I ), 1 )
J = J + MNMIN
CALL DCOPY( MNMIN, WORK( J ), 1, VT( I,1 ), LDPT )
J = J + MNMIN
210 CONTINUE
*
* Use DBDSVDX to compute only the singular values of the
* bidiagonal matrix B; U and VT should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, WORK( IWBD ), 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK( IWBE ), 1 )
*
CALL DBDSVDX( UPLO, 'N', 'I', MNMIN, WORK( IWBD ),
$ WORK( IWBE ), ZERO, ZERO, IL, IU, NS2, S2,
$ WORK( IWBZ ), MNMIN2, WORK( IWWORK ),
$ IWORK, IINFO )
*
* Check error code from DBDSVDX.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSVDX(values,I)', IINFO,
$ M, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 29 ) = ULPINV
GO TO 270
END IF
END IF
*
* Test 25: Check S1 - U' * B * VT'
* 26: Check the orthogonality of U
* 27: Check the orthogonality of VT
* 28: Check that the singular values are sorted in
* non-increasing order and are non-negative
* 29: Compare DBDSVDX with and without singular vectors
*
CALL DBDT04( UPLO, MNMIN, BD, BE, S1, NS1, U,
$ LDPT, VT, LDPT, WORK( IWBS+MNMIN ),
$ RESULT( 25 ) )
CALL DORT01( 'Columns', MNMIN, NS1, U, LDPT,
$ WORK( IWBS+MNMIN ), LWORK-MNMIN,
$ RESULT( 26 ) )
CALL DORT01( 'Rows', NS1, MNMIN, VT, LDPT,
$ WORK( IWBS+MNMIN ), LWORK-MNMIN,
$ RESULT( 27 ) )
*
RESULT( 28 ) = ZERO
DO 220 I = 1, NS1 - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 28 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 28 ) = ULPINV
220 CONTINUE
IF( NS1.GE.1 ) THEN
IF( S1( NS1 ).LT.ZERO )
$ RESULT( 28 ) = ULPINV
END IF
*
TEMP2 = ZERO
DO 230 J = 1, NS1
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
230 CONTINUE
RESULT( 29 ) = TEMP2
*
* Use DBDSVDX with RANGE='V': determine the values VL and VU
* of the IL-th and IU-th singular values and ask for all
* singular values in this range.
*
CALL DCOPY( MNMIN, WORK( IWBS ), 1, S1, 1 )
*
IF( MNMIN.GT.0 ) THEN
IF( IL.NE.1 ) THEN
VU = S1( IL ) + MAX( HALF*ABS( S1( IL )-S1( IL-1 ) ),
$ ULP*ANORM, TWO*RTUNFL )
ELSE
VU = S1( 1 ) + MAX( HALF*ABS( S1( MNMIN )-S1( 1 ) ),
$ ULP*ANORM, TWO*RTUNFL )
END IF
IF( IU.NE.NS1 ) THEN
VL = S1( IU ) - MAX( ULP*ANORM, TWO*RTUNFL,
$ HALF*ABS( S1( IU+1 )-S1( IU ) ) )
ELSE
VL = S1( NS1 ) - MAX( ULP*ANORM, TWO*RTUNFL,
$ HALF*ABS( S1( MNMIN )-S1( 1 ) ) )
END IF
VL = MAX( VL,ZERO )
VU = MAX( VU,ZERO )
IF( VL.GE.VU ) VU = MAX( VU*2, VU+VL+HALF )
ELSE
VL = ZERO
VU = ONE
END IF
*
CALL DCOPY( MNMIN, BD, 1, WORK( IWBD ), 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK( IWBE ), 1 )
*
CALL DBDSVDX( UPLO, 'V', 'V', MNMIN, WORK( IWBD ),
$ WORK( IWBE ), VL, VU, 0, 0, NS1, S1,
$ WORK( IWBZ ), MNMIN2, WORK( IWWORK ),
$ IWORK, IINFO )
*
* Check error code from DBDSVDX.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSVDX(vects,V)', IINFO,
$ M, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 30 ) = ULPINV
GO TO 270
END IF
END IF
*
J = IWBZ
DO 240 I = 1, NS1
CALL DCOPY( MNMIN, WORK( J ), 1, U( 1,I ), 1 )
J = J + MNMIN
CALL DCOPY( MNMIN, WORK( J ), 1, VT( I,1 ), LDPT )
J = J + MNMIN
240 CONTINUE
*
* Use DBDSVDX to compute only the singular values of the
* bidiagonal matrix B; U and VT should not be modified.
*
CALL DCOPY( MNMIN, BD, 1, WORK( IWBD ), 1 )
IF( MNMIN.GT.0 )
$ CALL DCOPY( MNMIN-1, BE, 1, WORK( IWBE ), 1 )
*
CALL DBDSVDX( UPLO, 'N', 'V', MNMIN, WORK( IWBD ),
$ WORK( IWBE ), VL, VU, 0, 0, NS2, S2,
$ WORK( IWBZ ), MNMIN2, WORK( IWWORK ),
$ IWORK, IINFO )
*
* Check error code from DBDSVDX.
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9998 )'DBDSVDX(values,V)', IINFO,
$ M, N, JTYPE, IOLDSD
INFO = ABS( IINFO )
IF( IINFO.LT.0 ) THEN
RETURN
ELSE
RESULT( 34 ) = ULPINV
GO TO 270
END IF
END IF
*
* Test 30: Check S1 - U' * B * VT'
* 31: Check the orthogonality of U
* 32: Check the orthogonality of VT
* 33: Check that the singular values are sorted in
* non-increasing order and are non-negative
* 34: Compare DBDSVDX with and without singular vectors
*
CALL DBDT04( UPLO, MNMIN, BD, BE, S1, NS1, U,
$ LDPT, VT, LDPT, WORK( IWBS+MNMIN ),
$ RESULT( 30 ) )
CALL DORT01( 'Columns', MNMIN, NS1, U, LDPT,
$ WORK( IWBS+MNMIN ), LWORK-MNMIN,
$ RESULT( 31 ) )
CALL DORT01( 'Rows', NS1, MNMIN, VT, LDPT,
$ WORK( IWBS+MNMIN ), LWORK-MNMIN,
$ RESULT( 32 ) )
*
RESULT( 33 ) = ZERO
DO 250 I = 1, NS1 - 1
IF( S1( I ).LT.S1( I+1 ) )
$ RESULT( 28 ) = ULPINV
IF( S1( I ).LT.ZERO )
$ RESULT( 28 ) = ULPINV
250 CONTINUE
IF( NS1.GE.1 ) THEN
IF( S1( NS1 ).LT.ZERO )
$ RESULT( 28 ) = ULPINV
END IF
*
TEMP2 = ZERO
DO 260 J = 1, NS1
TEMP1 = ABS( S1( J )-S2( J ) ) /
$ MAX( SQRT( UNFL )*MAX( S1( 1 ), ONE ),
$ ULP*MAX( ABS( S1( 1 ) ), ABS( S2( 1 ) ) ) )
TEMP2 = MAX( TEMP1, TEMP2 )
260 CONTINUE
RESULT( 34 ) = TEMP2
*
* End of Loop -- Check for RESULT(j) > THRESH
*
270 CONTINUE
*
DO 280 J = 1, 34
IF( RESULT( J ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 )
$ CALL DLAHD2( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )M, N, JTYPE, IOLDSD, J,
$ RESULT( J )
NFAIL = NFAIL + 1
END IF
280 CONTINUE
IF( .NOT.BIDIAG ) THEN
NTEST = NTEST + 34
ELSE
NTEST = NTEST + 30
END IF
*
290 CONTINUE
300 CONTINUE
*
* Summary
*
CALL ALASUM( PATH, NOUT, NFAIL, NTEST, 0 )
*
RETURN
*
* End of DCHKBD
*
9999 FORMAT( ' M=', I5, ', N=', I5, ', type ', I2, ', seed=',
$ 4( I4, ',' ), ' test(', I2, ')=', G11.4 )
9998 FORMAT( ' DCHKBD: ', A, ' returned INFO=', I6, '.', / 9X, 'M=',
$ I6, ', N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
$ I5, ')' )
*
END
|