1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
|
*> \brief \b DDRVLS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
* COPYB, C, S, COPYS, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NM, NN, NNB, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
* $ NVAL( * ), NXVAL( * )
* DOUBLE PRECISION A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
* $ COPYS( * ), S( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVLS tests the least squares driver routines DGELS, DGELST,
*> DGETSLS, DGELSS, DGELSY, and DGELSD.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> The matrix of type j is generated as follows:
*> j=1: A = U*D*V where U and V are random orthogonal matrices
*> and D has random entries (> 0.1) taken from a uniform
*> distribution (0,1). A is full rank.
*> j=2: The same of 1, but A is scaled up.
*> j=3: The same of 1, but A is scaled down.
*> j=4: A = U*D*V where U and V are random orthogonal matrices
*> and D has 3*min(M,N)/4 random entries (> 0.1) taken
*> from a uniform distribution (0,1) and the remaining
*> entries set to 0. A is rank-deficient.
*> j=5: The same of 4, but A is scaled up.
*> j=6: The same of 5, but A is scaled down.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB and NX contained in the
*> vectors NBVAL and NXVAL. The blocking parameters are used
*> in pairs (NB,NX).
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NXVAL
*> \verbatim
*> NXVAL is INTEGER array, dimension (NNB)
*> The values of the crossover point NX.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (MMAX*NMAX)
*> where MMAX is the maximum value of M in MVAL and NMAX is the
*> maximum value of N in NVAL.
*> \endverbatim
*>
*> \param[out] COPYA
*> \verbatim
*> COPYA is DOUBLE PRECISION array, dimension (MMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
*> where MMAX is the maximum value of M in MVAL and NSMAX is the
*> maximum value of NRHS in NSVAL.
*> \endverbatim
*>
*> \param[out] COPYB
*> \verbatim
*> COPYB is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[out] COPYS
*> \verbatim
*> COPYS is DOUBLE PRECISION array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
$ COPYB, C, S, COPYS, NOUT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NM, NN, NNB, NNS, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER MVAL( * ), NBVAL( * ), NSVAL( * ),
$ NVAL( * ), NXVAL( * )
DOUBLE PRECISION A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
$ COPYS( * ), S( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D0, TWO = 2.0D0, ZERO = 0.0D0 )
* ..
* .. Local Scalars ..
CHARACTER TRANS
CHARACTER*3 PATH
INTEGER CRANK, I, IM, IMB, IN, INB, INFO, INS, IRANK,
$ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK, MB,
$ MMAX, NMAX, NSMAX, LIWORK,
$ LWORK_DGELS, LWORK_DGELST, LWORK_DGETSLS,
$ LWORK_DGELSS, LWORK_DGELSY, LWORK_DGELSD
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 ), IWQ( 1 )
DOUBLE PRECISION RESULT( NTESTS ), WQ( 1 )
* ..
* .. Allocatable Arrays ..
DOUBLE PRECISION, ALLOCATABLE :: WORK (:)
INTEGER, ALLOCATABLE :: IWORK (:)
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DQRT12, DQRT14, DQRT17
EXTERNAL DASUM, DLAMCH, DQRT12, DQRT14, DQRT17
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DERRLS, DGELS,
$ DGELSD, DGELSS, DGELST, DGELSY, DGEMM,
$ DGETSLS, DLACPY, DLARNV, DQRT13, DQRT15,
$ DQRT16, DSCAL, XLAENV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, INT, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, IOUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'LS'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Epsilon' )
*
* Threshold for rank estimation
*
RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
*
* Test the error exits
*
CALL XLAENV( 2, 2 )
CALL XLAENV( 9, SMLSIZ )
IF( TSTERR )
$ CALL DERRLS( PATH, NOUT )
*
* Print the header if NM = 0 or NN = 0 and THRESH = 0.
*
IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
$ CALL ALAHD( NOUT, PATH )
INFOT = 0
CALL XLAENV( 2, 2 )
CALL XLAENV( 9, SMLSIZ )
*
* Compute maximal workspace needed for all routines
*
NMAX = 0
MMAX = 0
NSMAX = 0
DO I = 1, NM
IF ( MVAL( I ).GT.MMAX ) THEN
MMAX = MVAL( I )
END IF
ENDDO
DO I = 1, NN
IF ( NVAL( I ).GT.NMAX ) THEN
NMAX = NVAL( I )
END IF
ENDDO
DO I = 1, NNS
IF ( NSVAL( I ).GT.NSMAX ) THEN
NSMAX = NSVAL( I )
END IF
ENDDO
M = MMAX
N = NMAX
NRHS = NSMAX
MNMIN = MAX( MIN( M, N ), 1 )
*
* Compute workspace needed for routines
* DQRT14, DQRT17 (two side cases), DQRT15 and DQRT12
*
LWORK = MAX( 1, ( M+N )*NRHS,
$ ( N+NRHS )*( M+2 ), ( M+NRHS )*( N+2 ),
$ MAX( M+MNMIN, NRHS*MNMIN,2*N+M ),
$ MAX( M*N+4*MNMIN+MAX(M,N), M*N+2*MNMIN+4*N ) )
LIWORK = 1
*
* Iterate through all test cases and compute necessary workspace
* sizes for ?GELS, ?GELST, ?GETSLS, ?GELSY, ?GELSS and ?GELSD
* routines.
*
DO IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
DO IN = 1, NN
N = NVAL( IN )
MNMIN = MAX(MIN( M, N ),1)
LDB = MAX( 1, M, N )
DO INS = 1, NNS
NRHS = NSVAL( INS )
DO IRANK = 1, 2
DO ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( DOTYPE( ITYPE ) ) THEN
IF( IRANK.EQ.1 ) THEN
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
* Compute workspace needed for DGELS
CALL DGELS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_DGELS = INT ( WQ ( 1 ) )
* Compute workspace needed for DGELST
CALL DGELST( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_DGELST = INT ( WQ ( 1 ) )
* Compute workspace needed for DGETSLS
CALL DGETSLS( TRANS, M, N, NRHS, A, LDA,
$ B, LDB, WQ, -1, INFO )
LWORK_DGETSLS = INT( WQ ( 1 ) )
ENDDO
END IF
* Compute workspace needed for DGELSY
CALL DGELSY( M, N, NRHS, A, LDA, B, LDB, IWQ,
$ RCOND, CRANK, WQ, -1, INFO )
LWORK_DGELSY = INT( WQ ( 1 ) )
* Compute workspace needed for DGELSS
CALL DGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WQ, -1 , INFO )
LWORK_DGELSS = INT( WQ ( 1 ) )
* Compute workspace needed for DGELSD
CALL DGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WQ, -1, IWQ, INFO )
LWORK_DGELSD = INT( WQ ( 1 ) )
* Compute LIWORK workspace needed for DGELSY and DGELSD
LIWORK = MAX( LIWORK, N, IWQ( 1 ) )
* Compute LWORK workspace needed for all functions
LWORK = MAX( LWORK, LWORK_DGELS, LWORK_DGELST,
$ LWORK_DGETSLS, LWORK_DGELSY,
$ LWORK_DGELSS, LWORK_DGELSD )
END IF
ENDDO
ENDDO
ENDDO
ENDDO
ENDDO
*
LWLSY = LWORK
*
ALLOCATE( WORK( LWORK ) )
ALLOCATE( IWORK( LIWORK ) )
*
DO 150 IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
*
DO 140 IN = 1, NN
N = NVAL( IN )
MNMIN = MAX(MIN( M, N ),1)
LDB = MAX( 1, M, N )
MB = (MNMIN+1)
*
DO 130 INS = 1, NNS
NRHS = NSVAL( INS )
*
DO 120 IRANK = 1, 2
DO 110 ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 110
* =====================================================
* Begin test DGELS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL DLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL DSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ), WORK,
$ 1 )
END IF
CALL DGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, ONE, COPYA, LDA,
$ WORK, LDWORK, ZERO, B, LDB )
CALL DLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL DLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'DGELS '
CALL DGELS( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELS ', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 1: Check correctness of results
* for DGELS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 1 ) )
*
* Test 2: Check correctness of results
* for DGELS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 2 ) = DQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 2 ) = DQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 ) TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test DGELS
* =====================================================
* =====================================================
* Begin test DGELST
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
*
* Loop for testing non-transposed and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL DLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL DSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ), WORK,
$ 1 )
END IF
CALL DGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, ONE, COPYA, LDA,
$ WORK, LDWORK, ZERO, B, LDB )
CALL DLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL DLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'DGELST'
CALL DGELST( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELST', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Test 3: Check correctness of results
* for DGELST, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, WORK,
$ RESULT( 3 ) )
*
* Test 4: Check correctness of results
* for DGELST.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 4 ) = DQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 4 ) = DQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 3, 4
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 ) TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END IF
* =====================================================
* End test DGELST
* =====================================================
* =====================================================
* Begin test DGETSLS
* =====================================================
IF( IRANK.EQ.1 ) THEN
*
* Generate a matrix of scaling type ISCALE
*
CALL DQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
*
* Loop for testing different block sizes MB.
*
DO IMB = 1, NNB
MB = NBVAL( IMB )
CALL XLAENV( 1, MB )
*
* Loop for testing different block sizes NB.
*
DO INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 2, NB )
*
* Loop for testing non-transposed
* and transposed.
*
DO ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'T'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL DLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL DSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ),
$ WORK, 1 )
END IF
CALL DGEMM( TRANS, 'No transpose',
$ NROWS, NRHS, NCOLS, ONE,
$ COPYA, LDA, WORK, LDWORK,
$ ZERO, B, LDB )
CALL DLACPY( 'Full', NROWS, NRHS,
$ B, LDB, COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL DLACPY( 'Full', M, N,
$ COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'DGETSLS'
CALL DGETSLS( TRANS, M, N, NRHS,
$ A, LDA, B, LDB, WORK, LWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGETSLS', INFO,
$ 0, TRANS, M, N, NRHS,
$ -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 5: Check correctness of results
* for DGETSLS, compute the residual:
* RESID = norm(B - A*X) /
* / ( max(m,n) * norm(A) * norm(X) * EPS )
*
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL DLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL DQRT16( TRANS, M, N, NRHS,
$ COPYA, LDA, B, LDB,
$ C, LDB, WORK,
$ RESULT( 5 ) )
*
* Test 6: Check correctness of results
* for DGETSLS.
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system, compute:
* r = norm((B- A*X)**T * A) /
* / (norm(A)*norm(B)*max(M,N,NRHS)*EPS)
*
RESULT( 6 ) = DQRT17( TRANS, 1, M,
$ N, NRHS, COPYA, LDA,
$ B, LDB, COPYB, LDB,
$ C, WORK, LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 6 ) = DQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA,
$ B, LDB, WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO K = 5, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 ) TRANS,
$ M, N, NRHS, MB, NB, ITYPE,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
END DO
NRUN = NRUN + 2
END DO
END DO
END DO
END IF
* =====================================================
* End test DGETSLS
* =====================================================
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
*
CALL DQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
$ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
$ ISEED, WORK, LWORK )
*
* workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
LDWORK = MAX( 1, M )
*
* Loop for testing different block sizes.
*
DO 100 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Test DGELSY
*
* DGELSY: Compute the minimum-norm solution X
* to min( norm( A * X - B ) )
* using the rank-revealing orthogonal
* factorization.
*
* Initialize vector IWORK.
*
DO 70 J = 1, N
IWORK( J ) = 0
70 CONTINUE
*
CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'DGELSY'
CALL DGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
$ RCOND, CRANK, WORK, LWLSY, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELSY', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 7 ) = DQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK )
*
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 10 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test DGELSS
*
* DGELSS: Compute the minimum-norm solution X
* to min( norm( A * X - B ) )
* using the SVD.
*
CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
SRNAMT = 'DGELSS'
CALL DGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELSS', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 11 ) = ZERO
END IF
*
* Test 12: Compute error in solution
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 12 ) )
*
* Test 13: Check norm of r'*A
*
RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 13 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 14: Check if x is in the rowspace of A
*
RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 14 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test DGELSD
*
* DGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
* Initialize vector IWORK.
*
DO 80 J = 1, N
IWORK( J ) = 0
80 CONTINUE
*
CALL DLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'DGELSD'
CALL DGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, IWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'DGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL DLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL DQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK,
$ WORK( M*NRHS+1 ), RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = DQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = DQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 90 K = 7, 18
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
$ ITYPE, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
90 CONTINUE
NRUN = NRUN + 12
*
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
$ ', type', I2, ', test(', I2, ')=', G12.5 )
9997 FORMAT( ' TRANS=''', A1,' M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', MB=', I4,', NB=', I4,', type', I2,
$ ', test(', I2, ')=', G12.5 )
*
DEALLOCATE( WORK )
DEALLOCATE( IWORK )
RETURN
*
* End of DDRVLS
*
END
|