1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
*> \brief \b DGBT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
* LDB, RWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ),
* RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGBT02 computes the residual for a solution of a banded system of
*> equations op(A)*X = B:
*> RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
*> where op(A) = A or A**T, depending on TRANS, and EPS is the
*> machine epsilon.
*> The norm used is the 1-norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The original matrix A in band storage, stored in rows 1 to
*> KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> The computed solution vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. If TRANS = 'N',
*> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> On entry, the right hand side vectors for the system of
*> linear equations.
*> On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. IF TRANS = 'N',
*> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK)),
*> where LRWORK >= M when TRANS = 'T' or 'C'; otherwise, RWORK
*> is not referenced.
*> \endverbatim
*
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> The maximum over the number of right hand sides of
*> norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
$ LDB, RWORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ),
$ RWORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I1, I2, J, KD, N1
DOUBLE PRECISION ANORM, BNORM, EPS, TEMP, XNORM
* ..
* .. External Functions ..
LOGICAL DISNAN, LSAME
DOUBLE PRECISION DASUM, DLAMCH
EXTERNAL DASUM, DISNAN, DLAMCH, LSAME
* ..
* .. External Subroutines ..
EXTERNAL DGBMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if N = 0 pr NRHS = 0
*
IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZERO
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Find norm1(A).
*
KD = KU + 1
DO 10 J = 1, N
I1 = MAX( KD+1-J, 1 )
I2 = MIN( KD+M-J, KL+KD )
IF( I2.GE.I1 ) THEN
TEMP = DASUM( I2-I1+1, A( I1, J ), 1 )
IF( ANORM.LT.TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
END IF
10 CONTINUE
ELSE
*
* Find normI(A).
*
DO 12 I1 = 1, M
RWORK( I1 ) = ZERO
12 CONTINUE
DO 16 J = 1, N
KD = KU + 1 - J
DO 14 I1 = MAX( 1, J-KU ), MIN( M, J+KL )
RWORK( I1 ) = RWORK( I1 ) + ABS( A( KD+I1, J ) )
14 CONTINUE
16 CONTINUE
DO 18 I1 = 1, M
TEMP = RWORK( I1 )
IF( ANORM.LT.TEMP .OR. DISNAN( TEMP ) ) ANORM = TEMP
18 CONTINUE
END IF
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
N1 = N
ELSE
N1 = M
END IF
*
* Compute B - op(A)*X
*
DO 20 J = 1, NRHS
CALL DGBMV( TRANS, M, N, KL, KU, -ONE, A, LDA, X( 1, J ), 1,
$ ONE, B( 1, J ), 1 )
20 CONTINUE
*
* Compute the maximum over the number of right hand sides of
* norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
RESID = ZERO
DO 30 J = 1, NRHS
BNORM = DASUM( N1, B( 1, J ), 1 )
XNORM = DASUM( N1, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
30 CONTINUE
*
RETURN
*
* End of DGBT02
*
END
|