File: stpt02.f

package info (click to toggle)
lapack 3.11.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 76,136 kB
  • sloc: fortran: 605,191; ansic: 197,715; makefile: 5,018; f90: 1,379; sh: 326; python: 266
file content (223 lines) | stat: -rw-r--r-- 6,235 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
*> \brief \b STPT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE STPT02( UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB,
*                          WORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            LDB, LDX, N, NRHS
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*       REAL               AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> STPT02 computes the residual for the computed solution to a
*> triangular system of linear equations op(A)*X = B, when the
*> triangular matrix A is stored in packed format. The test ratio is
*> the maximum over
*>    norm(b - op(A)*x) / ( ||op(A)||_1 * norm(x) * EPS ),
*> where op(A) = A or A**T, b is the column of B, x is the solution
*> vector, and EPS is the machine epsilon.
*> The norm used is the 1-norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the operation applied to A.
*>          = 'N':  A    * X = B  (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices X and B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is REAL array, dimension (N*(N+1)/2)
*>          The upper or lower triangular matrix A, packed columnwise in
*>          a linear array.  The j-th column of A is stored in the array
*>          AP as follows:
*>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L',
*>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is REAL array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          The right hand side vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          The maximum over the number of right hand sides of
*>          norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE STPT02( UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB,
     $                   WORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SASUM, SLAMCH, SLANTP
      EXTERNAL           LSAME, SASUM, SLAMCH, SLANTP
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY, STPMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute the 1-norm of op(A).
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         ANORM = SLANTP( '1', UPLO, DIAG, N, AP, WORK )
      ELSE
         ANORM = SLANTP( 'I', UPLO, DIAG, N, AP, WORK )
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ).
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
         CALL STPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
         CALL SAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
         BNORM = SASUM( N, WORK, 1 )
         XNORM = SASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of STPT02
*
      END