1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
*> \brief \b ZHET01_AA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV,
* C, LDC, RWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDA, LDAFAC, LDC, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHET01_AA reconstructs a hermitian indefinite matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*> norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix and EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The original hermitian matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the block
*> diagonal matrix D and the multipliers used to obtain the
*> factor L or U from the block L*D*L' or U*D*U' factorization
*> as computed by ZHETRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from ZHETRF.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is COMPLEX*16 array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is COMPLEX*16
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZHET01_AA( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
$ LDC, RWORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, LDC, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANHE
EXTERNAL LSAME, DLAMCH, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZLASET, ZLAVHE
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
*
* Initialize C to the tridiagonal matrix T.
*
CALL ZLASET( 'Full', N, N, CZERO, CZERO, C, LDC )
CALL ZLACPY( 'F', 1, N, AFAC( 1, 1 ), LDAFAC+1, C( 1, 1 ), LDC+1 )
IF( N.GT.1 ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 1, 2 ),
$ LDC+1 )
CALL ZLACPY( 'F', 1, N-1, AFAC( 1, 2 ), LDAFAC+1, C( 2, 1 ),
$ LDC+1 )
CALL ZLACGV( N-1, C( 2, 1 ), LDC+1 )
ELSE
CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 1, 2 ),
$ LDC+1 )
CALL ZLACPY( 'F', 1, N-1, AFAC( 2, 1 ), LDAFAC+1, C( 2, 1 ),
$ LDC+1 )
CALL ZLACGV( N-1, C( 1, 2 ), LDC+1 )
ENDIF
*
* Call ZTRMM to form the product U' * D (or L * D ).
*
IF( LSAME( UPLO, 'U' ) ) THEN
CALL ZTRMM( 'Left', UPLO, 'Conjugate transpose', 'Unit',
$ N-1, N, CONE, AFAC( 1, 2 ), LDAFAC, C( 2, 1 ),
$ LDC )
ELSE
CALL ZTRMM( 'Left', UPLO, 'No transpose', 'Unit', N-1, N,
$ CONE, AFAC( 2, 1 ), LDAFAC, C( 2, 1 ), LDC )
END IF
*
* Call ZTRMM again to multiply by U (or L ).
*
IF( LSAME( UPLO, 'U' ) ) THEN
CALL ZTRMM( 'Right', UPLO, 'No transpose', 'Unit', N, N-1,
$ CONE, AFAC( 1, 2 ), LDAFAC, C( 1, 2 ), LDC )
ELSE
CALL ZTRMM( 'Right', UPLO, 'Conjugate transpose', 'Unit', N,
$ N-1, CONE, AFAC( 2, 1 ), LDAFAC, C( 1, 2 ),
$ LDC )
END IF
*
* Apply hermitian pivots
*
DO J = N, 1, -1
I = IPIV( J )
IF( I.NE.J )
$ CALL ZSWAP( N, C( J, 1 ), LDC, C( I, 1 ), LDC )
END DO
DO J = N, 1, -1
I = IPIV( J )
IF( I.NE.J )
$ CALL ZSWAP( N, C( 1, J ), 1, C( 1, I ), 1 )
END DO
ENDIF
*
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO J = 1, N
DO I = 1, J
C( I, J ) = C( I, J ) - A( I, J )
END DO
END DO
ELSE
DO J = 1, N
DO I = J, N
C( I, J ) = C( I, J ) - A( I, J )
END DO
END DO
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of ZHET01_AA
*
END
|